
INFO(1)CUP 2022 EDITORIALS

SCIENTIFIC COMMITTEE

Problem Sumex

Authors: Matteo-Alexandru Verzotti, Alexandru Luchianov

Let’s define the minimum excluded element as mex. Also, we define a sequence a as a
subsequence of a sequence s if a can be obtained by deletion of (possibly zero) elements
from the beginning and end of s. In other words, 2,3,4 is a subsequence of 1,2,3,4,5;
whereas 1,3,4 is not.

Subtask 1

Since all the numbers are greater than or equal to 1, then the mex of all subsequences
will always be 0, so the answer in this case is always 0.

Time complexity: O(N +Q).

Subtask 2

For each query we will go through all the subsequences of al , al+1, . . . , ar and find the
mex for each one of them. We will keep a boolean array visited, such that visited[x] = true
if and only if the value x appears in the sequence al′ , al′+1, . . . , ar ′ . The mex of the sequence
is the first value y such that visited[y] = false.

Time complexity: O(L3 ∗Q), where L is the length of the query.

Subtask 3

Observation. If the mex of the sequence al , al+1, . . . ar is smaller than the mex of the sequence
al , al+1, . . . ar ′ , then r < r ′.

If we fix the left boundary for the subarray, every time we increase the right boundary,
the mex can only increase. In conclusion, we don’t have to reset it. Since the numbers
are ≤ n, the mex can only increase a total of n times, bringing down the complexity for
getting the mex of all arrays with a fixed left boundary from O(N2) to O(N).

We are going to precompute, using the observation above, the mex of all subarrays of
the original array in a matrix A, such that A[i][j] is the mex of the sequence ai , ai+1, . . . , aj .
The answer for a query l, r is the sum of all values A[l′][r ′] where l ≤ l′ ≤ r ′ ≤ r. This can
be easily computed using prefix sums on the matrix A.

Time complexity: O(N2 +Q).

Date: February 2022.

1

INFO(1)CUP 2022 EDITORIALS 2

Subtask 4

We are going to precompute for each number i from 0 to n− 1, the minimum length
interval [xi , yi] that contains all the numbers from 0 to i − 1.

Observation. [xi−1, yi−1] ⊂ [xi , yi] for each i from 1 to n− 1.

In conclusion, the intervals can be precomputed using prefix minimums/maximums.
Using these intervals, we can binary search the mex of the interval query. Let’s call this
value m. Now, we can deduce that the answer for the query i is given by the formula

m∑
j=0

(xj − li + 1)(ri − yj + 1)

By expanding the brackets, we get

(ri + 1)
m∑
j=0

xj + (li − 1)
m∑
j=0

yj + (li + 1)(ri + 1)
m∑
j=0

xjyj

We can solve this in constant time by precomputing partial sums on the aforemen-
tioned arrays.

Time complexity: O(Q logN)

Subtask 5

Let’s view the problem from a different perspective. Suppose we want to calcu-
late the sum of mex of all subsequences ending at position i. We will be using an
algorithm similar to a sweeping line. Let’s create an array lastpos, such that lastpos[x]
marks the last occurence of x up until i; and an array minpos, such that minpos[i] =
min(lastpos[0], . . . , lastpos[i]).

Observation. The sum of mex of all subsequences ending at position i is the sum of the values
of the array minpos.

Let’s illustrate these using a bar chart.

Figure 1. Chart using the array given in the problem example and i = 5.

INFO(1)CUP 2022 EDITORIALS 3

The above observation can now be reformulated as: The sum of mex of all subsequences
ending at position i is the area under the partial minimums graph.

Observation. The sum of mex of all subsequences with their left end greater than l and
ending at position r is the area under the partial minimums graph, above the horizontal line
(l − 1).

Figure 2. Sum of mex of all subarrays with left end greater or equal
than 3 and right end equal to 5 for the same array is the area marked

with deep blue.

Using these two observations, we can now move forward to the solution. Let’s call
the area above the horizontal l − 1, at a point in time r, as Areal,r . Formally, for the i-th
query, we want to compute

ri∑
r ′=li

Areali ,r ′

We will solve the queries in an offline manner. We will sort them by their left end
(because of the nature of the queries, they will also be sorted by their right end) and
simulate the operations on the above graph using a brute-force approach. Since they are
sorted by both ends, the queries can be traversed using an algorithm similar to the two
pointers method.

Time complexity: O(Q logQ+QMAXVAL).

Subtask 6

For this subtask we’ll have to optimize the way we compute the changes on the
aforementioned graph. We can observe that we only really care about the minimum
partial graph, so let’s use that one instead, for the sake of simplicity. We will split the
graph into rectangles characterised by the triplet (left, right, height), meaning that there
is a rectangle from position left to position right with height height.

This time we’ll traverse the array once from 1 to n to form the graph after , but the
updates on it will be done in reverse. This way, when we transition from i to i − 1, the
graph flattens, which will help us in the future. We will find the value of v[i], find the

INFO(1)CUP 2022 EDITORIALS 4

next position to its left, and then update the rectangle that contains v[i] accordingly.
Next, we’ll have to update all the rectangles to the right of v[i] such that they are not
taller than the one containing v[i]. Here’s an example when transitioning from i = 5 to
i = 4:

Figure 3. Transition from i = 5 to i = 4.

In order to achieve this, we want to keep our rectangles in a data structure that:
• Keeps them sorted.
• Supports operations of insertion/deletion.

A simple data structure that achieves this is the C++ set.
Time complexity: O(N logN)

Subtask 7

We now have to optimize the way we find the area over a horizontal line. We’ll keep
an array len and an array area, with the following definitions:

• len[h] = total length of the rectangles with height less than or equal to h;
• area[h] = total area of the rectangles with height less than or equal to h.

Both the arrays len and area have operations of type: ”Add value val to positions
x,x + 1, . . . ,n” and ”What is the sum of values x,x + 1, . . . ,n?”. They can be processed
easily using a data structure like a Segment Tree/Fenwick Tree.

Now, it’s easy to see that, for a query of type l, r, we get the formula

Areal,r = (area[n]− area[l − 1])− (len[n]− len[l − 1])(l − 1)

We can also compute for each rectangle the length of time of its existence above the
horizontal line, so we can calculate its contribution to the final answer.

Time complexity: O((N +Q) logN)

Problem Date

Author: Tamio-Vesa Nakajima

We will count separately the dates of form y/m/d where m , 2 or d , 29 (the non-leap
year case) and the dates of form y/2/29 where y mod 4 = 0 and either y mod 400 = 0 or
y mod 100 , 0.

INFO(1)CUP 2022 EDITORIALS 5

Non-leap year case: Fix the first /. To the left we need to count the number of
valid years, and to the right we need to count the number of valid months and
years. These values can be computed using dynamic programming: the first
value by computing the number of valid years in each prefix; the second value
by computing the number of times each day appears in each suffix, and then
similarly for each month.

Leap year case: Fix the first /. To the left we need to count the number of valid
years which also have the right value modulo 400, and to the right we need
to count the number of times 2/29 appears as a subsequence. These can be
computed similarly to above.

Problem Niceset

Author: Tamio-Vesa Nakajima

(In the following editorial, [x < y] is 1 if x < y, and 0 otherwise. This notation is called
an Iverson bracket.)

This problem asks for the largest subsequence of a given sequence a1, . . . , an for which
the sum of the absolute differences of all pairs of elements is at most S. The first
observation is that, if we sort a1, . . . , an, then the outputted subsequence can be assumed
to be continuous. The second observation is that the predicate “does there exist a
subsequence of size k that satisfies the required condition” is monotone with respect to
k. In other words, if it holds for k + 1, it also holds for k. This implies that we can use
binary search to find the largest possible value of k, if we can efficiently check if there
exists a subsequence of size k that respects the required condition.

How can we do this? Suppose we have sorted a1, . . . , an. Then the sum of absolute
differences of all pairs of ai , . . . , ai+k−1 is exactly

∑
i≤p<q≤i+k−1

|aq−ap| =
i+k−1∑
p=i

i+k−1∑
q=i

[p < q](aq−ap) =
i+k−1∑
q=i

aq

i+k−1∑
p=i

[p < q]

−i+k−1∑
p=i

ap

i+k−1∑
q=i

[p < q]


=

i+k−1∑
q=i

aq(q − i)−
i+k−1∑
p=i

ap(i + k − p − 1) =
i+k−1∑
q=i

qaq − i
i+k−1∑
q=i

aq +
i+k−1∑
p=i

pap − (i + k − 1)
i+k−1∑
p=i

ap

= 2
i+k−1∑
q=i

qaq − (2i + k − 1)
i+k−1∑
q=i

aq

Thus if we let Si =
∑j<i

j=1 aj and Ti =
∑j<i

j=1 jaj , we can find that the sum of absolute
differences of all pairs of ai , . . . , ai+k−1 is

2(Ti+k − Ti)− (2i + k − 1)(Si+k − Si).

Using this approach, we have a complexity of O(n logn).

Problem Hide and Seek

Author: Alexandru Luchianov

https://en.wikipedia.org/wiki/Iverson_bracket

INFO(1)CUP 2022 EDITORIALS 6

We will first consider a solution for when the input graph is a tree. Do a depth-first
search. Now, each node has a set of children and a parent, who together constitute all of
its neighbours. The sum of the neighbours of node is thus the sum of its children plus
the value of its parent. This indicates the way forward: for each node, maintain the sum
of its children. This allows us to find the result quickly. Then, when updating a value,
we need only update itself and the sum of its parents children. This can also be done in
one operation. The complexity is thus O(1) per query.

Now that we know how to find the solution in this case, we can make the following
observation: if we can split the edges of the graph into multiple trees (or, more generally,
forests), then we can run the previous algorithm on each tree (forest). If we split into f
forests, then the complexity is O(f) per query. The question is then: what is the smallest
number of forests we can split our input graph into?

It turns out that this is k, if we simply always remove an arbitrary forest that spans
each connected component. This can be done in linear time for each removed forest,
giving us a total O(k(n+m+ q)) complexity.

Problem Ezlulu

Author: Alexandru Luchianov

First, let us consider the total result. It is the sum, for each plate, of its value times
the number of plates broken by it. Another way of writing this sum is the sum, for each
plate x, of the value of the plate that breaks x. This immediately gives us an indication of
the way forward. Each plate can be broken only by the plates larger than it; and the cost
is maximized whenever the plate that breaks it is the highest-value one from among the
larger one. This gives us an upper bound on the total value: the sum, for each plate x, of
the highest value plate larger than x. Can this cost be achieved?

In fact, this can be done. For each plate x, let px be the maximum value plate larger
than x. We can now view the configuration of plates as a rooted tree, where the parent
of plate x is px. All we want is that each plate is broken by its parent. If we order
the children of a node in decreasing order of size, then it is not difficult to see that the
post-order traversal of the tree gives us the correct ordering.

Problem Tennis

Author: Alexandru Luchianov

A common approach when solving counting problems is to modify the statement to
an equivalent version which is easier to count. In our case, each valid sequence of balls
has value equal to countk, where count is the number of balls from the sequence with
weight at most y. The fact that each sequence has its own value makes it hard to count,
so we should reformulate the problem as follows to force each value to be 1: count
the number of ways to choose a valid sequence of balls and k not necessarily distinct
elements with weight at most y from the sequence. It is easy why the two formulations
are equivalent.

With our new formulation, we can solve the rest using dynamic programming. Let
dpijh be the number sequences of length i, whose sum, modulo w, is equivalent to j, an
which contains h elements with weight y or less. To make the recurrence easier to define,

INFO(1)CUP 2022 EDITORIALS 7

we use the convention that dpi,j−w,h = dpijh. We then have the following recurrence
relation:

dpi,j,h =
w−1∑
p=0

vpdpi−1,j−p,h +
y−1∑
p=0

h∑
q=0

(
h
q

)
vpdpi−1,j−p,h−q

If we use this recurrence we can find the solution in O(Nw2k2), this is unfortunately not
enough to good enough to get a full score. This can be further optimized using matrix
exponentiation, but there exists an even better and faster way of optimizing it. We can
compute the recurrence using something similar to divide and conquer: if i is odd then
we use the same formula as before; however, if i is even then we split the sequence of
length i in 2 smaller sequences of size i/2.

dpi,j,h =
∑

p+p′≡wj

∑
q+q′≡wh

(
h
q

)
dpi/2,p,qdpi/2,p′ ,q′

(Above, ≡w represents modulo w equivalence.) In this way, we can compute the solution
in O(w2k2 logn). The solution can be further optimized using NTT, however this was
not necessary for a full score.

	Problem Sumex
	Subtask 1
	Subtask 2
	Subtask 3
	Subtask 4
	Subtask 5
	Subtask 6
	Subtask 7
	Problem Date
	Problem Niceset
	Problem Hide and Seek
	Problem Ezlulu
	Problem Tennis

