European Junior Olympiad in Informatics 2022
Ukraine (online), 19-25 September 2022

Furopean Junior Olympiad in Informatics 2022
Editorial

Anton Trygub, Roman Bilyi, Matvii Aslandukov, Thor Barenblat

Special thanks to all the testers:

Kostiantyn Savchuk, Andrii Stolitnii, Kostiantyn Lutsenko, Vladislav Zavodnik,
Tymofii Reizin, Alex Danilyuk, Yahor Dubovik, Ashley Khoo

Special thanks to Anton Tsypko for his colossal work put into the organization of
EJOI

Page 1 of 12

European Junior Olympiad in Informatics 2022
Ukraine (online), 19-25 September 2022

Problem A. Adjacent Pairs

Author: Jeroen Op de Beek
Developer: Jeroen Op de Beek
Editorialist: Jeroen Op de Beek

Subtask 1. Let’s call an array good if all adjacent pairs of elements are different. At the beginning the
array is good, and after each operation the array will stay good. So the ending array must have the form:
[c,d,c,d,...],c# d . This means that there are O(n?) possible ending states. (For any ending state with
cordnot in {1,2,...,n}, it doesn’t matter what the value is exactly, so there are only O(n) interesting
options for those cases).

For this subtask we can try all pairs.
So we fix some ¢ and d. Let’s call the final array b := [¢,d, ¢, d, .. .].

Then we greedily make moves, trying to change elements in a to b. It could happen that a # b but no
greedy move is possible:

a=11,2,3,1,2]
b=1[1,21,21]

The last three elements of the array cannot be changed greedily, because this would cause adjacent equal
valued elements.

Such a blockage is always caused by some subarray that is of the form [d, ¢, d, c,...] which is the desired
pattern, but with the wrong parities. Let’s call subarrays which have values d and ¢ at indices of the
wrong parity and that can’t be extended further bad subarrays. It turns out that changing the second
element of any bad subarray to 10? is optimal (for the proof, see subtask 2).

So a simple algorithm will try to find a greedy move, if there’s no greedy move, it finds any starting point
of a bad subarray and changes the second element.

This can be implemented to run in O(n) per iteration, and there are at most O(n) iterations per pair of
c and d, so this will run in O(n*), with a small constant.

Subtask 2. Instead of simulating the process of converting the array we can calculate the number of
moves needed more directly. Firstly, for each ¢ and d we find all bad subarrays, with a single for loop.

For a bad subarray of size k it’s optimal to first do |k/2] extra moves, where we place the value 10° on
positions 2,4, 6, ... of the subarray. After this, the whole subarray can be finished greedily. To show that
this is the best we can do, let’s consider all possible moves we can make on this subarray.

When a value in the subarray is replaced, we are always left with two bad subarrays of sizes [and r, such
that kK = [+ r + 1. Notice that for a bad subarray of size 1, there’s no problem. Because it is maximal,
the elements around it cannot be equal to ¢ and d, but this means the only element of the subarray can
be greedily changed. By induction on the size of the subarray, and basecases 0 and 1 the lowerbound of
|k/2] extra moves can be proven. The formula for the number of moves needed will be:

#moves = n — (# of i, such that a; = b;) + Z |ki/2]

bad subarrays

Now the time per pair is reduced to O(n), and the total complexity is O(n?)

Subtask 3. It’s intuitively clear that values that appear more frequent are better candidates for ¢ or d.
We can show that instead of O(n?) pairs, we can only examine the O(n) best pairs. For all pairs ¢ and d,
calculate

#greedy moves = n — (# of i, such that a; = b;)

and sort them increasingly on this quantity. To calculate this value in O(1) per pair, we can count the
number of occurrences of z (1 <z < n) at odd and even indices as a precomputation step.

Page 2 of 12

European Junior Olympiad in Informatics 2022
Ukraine (online), 19-25 September 2022

Notice that the total number of bad subarrays over all pairs ¢ and d is O(n) (here we ignore bad subarrays
of length 1, because they don’t change the answer). This is because two bad subarrays cannot overlap
by more than 1 element. So there are only O(n) pairs of ¢ and d that cannot immediately be finished
by greedy moves. So by the pigeonhole principle, if we examine more pairs than this, we will always
have at least one pair with no bad subarrays. After this point no other pairs in the increasing order of
greedy moves can give a better answer, so we can break the loop early. With this observation we only
need to check O(n) pairs, and the time complexity becomes O(n?) or O(n?log(n)), depending on the
implementation.

Subtask 4. Instead of finding bad subarrays for each pair ¢ and d independently, all bad subarrays can
be found at once, with a single pass through array a, with some simple logic. We can use a map to store
(c,d) — extra moves needed, and add |bad subarray size/2] to the map appropriately.

Now for finding the best (¢, d) pair, iterate through all possible ¢, the final value of all odd indices of the
array.

For the value of d, we can loop through all d in decreasing order of occeyen[d] (the number of occurrences
of d in even positions). By reusing the same observation as subtask 3, we can break this loop over d as soon
as (c¢,d) can be solved with only greedy moves (i.e. it isn’t in the map). The total number of iterations of
the inner for loop is bounded by (size of the map) +n = O(n).

This gives an O(nlog(n)) algorithm, because of the sorting of d and the map. By changing out the map to
a hash map, and changing the sorting algorithm to counting sort, O(n) is also possible. For deterministic
linear time, with clever use of a global array that is reused between the iterations of ¢, the hashmap is no
longer needed. These optimizations were not needed to obtain the full score.

Page 3 of 12

European Junior Olympiad in Informatics 2022
Ukraine (online), 19-25 September 2022

Problem B. Where Is the Root?

Author: Ray Bai
Developer: Roman Bilyi
Editorialist: Anton Trygub

Subtask 1. You can just ask about each possible subset of nodes. As we will show later, for each two
root candidates there is a query for which their answers would be different, so we can determine the root
uniquely. It’s enough to ask 2™ — 1 queries.

Subtask 2. Let’s ask a query for each pair of nodes. Clearly, if root is v, then the answer to each query
(r,v) for v # r is YES. If there is only one node that gives YES for each query, it must be the root. Suppose
that some node 1 # r also gives YES for each query in which it’s included. If r is not a lead, then there
is a node v # r1,v # r such that LC'A(r1,v) = r, contradiction. So, must be a leaf.

Suppose that there is another leaf r; that gives YES for all queries. Then consider any leaf v different from
r,71 (in a graph in which at least one degree is at least 3, there are at least 3 leaves). Then, LC' A(ry,v)
can’t be equal to r; and v, so the answer would be NO. Contradiction.

So, if there is only one such node, it’s the root, otherwise it’s the uniq{ue leaf among the nodes which gave
,1)

YES for each query in which they were involved. It’s enough to ask %~ queries.

n

2

Subtask 3. There are many different approaches that achieve various bounds. We will describe the
solutions which work for n = 500 in 10 queries, and in 9 queries.

10 queries: Suppose that r is the root. First, let’s ask a query about all leaves. Their LCA has to be r
(if 7 is a leaf, it’s clear; otherwise, there is a leaf in each of the subtrees of 7). So, we can determine if r
is a leaf with this query.

Now if r is not a leaf, let’s ask queries for sets, which contain all leaves. We will get YES iff we have
included r into the set. So, we can do binary search on the non-leaf nodes, discarding roughly half at each
time. This way, we will need at most 9 queries.

Suppose now that r is a leaf. If we ask a question about some subset of the leaves of size > 2, the answer
will be YES if and only if 7 is in the chosen set. So, we can once again do binary search on the leaves,
until we get at most 2 candidates r1,75. At that point, we can ask a query for nodes ro, 73, where r3 is
any other leaf, to determine if 79 is the root. This way, we will also need at most 9 queries.

Adding the initial query about all leaves, we are done in 10 queries.

9 queries: Our algorithm loses one query at the first step: it might be the case that the number of
remaining candidates is n— some small number (when the root is a leaf, and almost all nodes are leaves,
for example). Let’s try to solve this issue.

Let’s arrange our nodes in the following fashion: first all leaves, then all non-leaves. What happens if we
ask a query about the some prefix of this order of length at least 27 Let’s consider two cases.

e Our prefix contains all the leaves, and, maybe, some other nodes. Then their LC'A is r, and we will
get YES if and only if r is in that prefix.

e Our prefix is some subset of the leaves. Then, if r is among them, we will get YES, otherwise their
LC A would be some node different from any of them, so we will get NO. Once again, we will get YES
if and only if r is in that prefix.

So, we can do binary search on this order of nodes! The only exception is when we end up with a prefix
of length 2. Then, as in previous subtask, we should ask one of these leaves with one of other leaves.

This solves the problem in 9 queries.

Page 4 of 12

European Junior Olympiad in Informatics 2022
Ukraine (online), 19-25 September 2022

Problem C. Bounded Spanning Tree

Authors: Thor Barenblat, Matvii Aslandukov
Developer: Ihor Barenblat
Editorialist: Thor Barenblat

Subtask 1. For each edge, its weight is known. There is need to check that edges can have different
weights from the range [1,m] and that edges with indices 1,2,...,n — 1 form a minimum spanning tree
of the given graph. The last can be done using any suitable algorithm. Time complexity: O(m - log(m))
or O(m).

Subtask 2. Just try all possible assignments for the weights of the edges and for each one check compliance
with the rules described in the statement. Time complexity: O(m! - m).

Subtask 3. Use dynamic programming on subsets of the edges. Lets denote dp[S] as a boolean variable
indicating that there is assignment of the weights 1,2,...,|S| to the edges from S, such that there is no
rules were broken. Here by “breaking mst rule” we mean assigning to a non-spanning-tree edge such value
that this edge will be taken into minimum spanning tree when considering it in the process of execution
of Kruskal’s algorithm. Time complexity: O(2™ - m).

Subtask 4. The same idea as in the Subtask 5, but with worse algorithm complexity. Also possible to
solve using “matching in bipartite graph” approach. Time complexity: O(m?) or O(m?).

Subtask 5. We see that for this subtask there is no “mst rule”. So we just need to find an assignment of
the edge weights using integers from the range [1, m]. It is possible to do this using greedy approach: set
1 to the edge that have I; = 1 with the minimum possible r;. This is true, since any valid assignment can
be changed without losing validity to be compatible with the mentioned greedy assignment. So the overall
greedy algorithm is the following: for each ¢ from 1 to m set ¢ as edge weight for the edge with [; <7 with
the minimum possible r;, between all edges with unset weight. Time complexity: O(m - log(m)).

Subtask 6. Lets call the non-spanning-tree edge as “special”. After the assigning a value for the special
edge we need to be sure that there exist possibility of assigning for spanning-tree edges weights from
the range [1,m] (except the already assigned one). Lets find all suitable possible values that satisfy this
condition, choose the greatest one from the range of the special edge and update r; for the edges on
the cycle to be sure that they are smaller that the value we assigned to the special edge. For finding
all suitable possible values that satisfy mentioned condition we can use Hall’s marriage theorem on the
bipartite graph (first part consists of vertices corresponding to the edges and second part consists of
vertices corresponding to possible edge weights): value k is suitable if and only if there is no L, R such
that L< k< Rand R—L+1<(#isuchthat 1 <i<(n—1)and L <I; <r; <R). Time complexity:
O(m - log(m)).

Subtask 7. Lets call pair of edges (€iree, €non tree) interesting (here eyee is a spanning-tree edge and
€non tree 18 a non-spanning-tree edge) if eqyee lies on the simple path in the expected minimum spanning
tree between vertices that connects €non_tree- It 18 easy to see that for each interesting pair of edges we can
do the following update: ejpee.r = min(epree.T, €non tree-™ — 1), €non tree-l = Mmax(enon tree-ly €tree.l + 1).
With such modifications, any assignment found by the greedy algorithm from the Subtask 5 will satisfy
“mst rule”. Time complexity: O(m - n).

Subtask 8. The same idea as in the Subtask 7, but with better algorithm complexity. You can use

segment tree to do mentioned updates. Time complexity: O(m - log(n)).

Subtask 9. The same idea as in the Subtask 7, but with better algorithm complexity. You can use
heavy-light decomposition to do mentioned updates. Time complexity: O(m - log?(n)).

Subtask 10. The same idea as in the Subtask 7, but with better algorithm complexity. You can use
binary lifting approach or non-trivial heavy-light decomposition approach to do mentioned updates. Time
complexity: O(m - log(n)).

Page 5 of 12

European Junior Olympiad in Informatics 2022
Ukraine (online), 19-25 September 2022

Problem D. Game With Numbers

Author: Matvii Aslandukov
Developer: Matvii Aslandukov
Editorialist: Matvii Aslandukov

Subtask 1. In the first subtask m = 1 so you can find two sums s; and so: the sum of all elements that
are divisible by b; and the sum of all elements that are not divisible by b;. Then the answer is min(s1, s2)
because the first player wants to minimize the sum of the remaining elements. Time complexity: O(n).

Lemma 1. Before describing the solution for each individual subtask let’s prove the following lemma: if
both players can remove all the elements from the array a using only their own rounds, then the answer is
0. Indeed, in such a case both players can make the sum of the remaining elements in the array a equal to
0 regardless of the actions of the second player. The first player wants to minimize the sum, therefore the
answer is not bigger than zero. At the same time, the second player wants to maximize the sum, therefore
the answer is not less than zero. Thus the only possible answer is 0.

Subtask 2. In the second subtask two own rounds are enough for the first player to remove all the
elements: he can remove all the numbers that are divisible by b1 and are not divisible by b3. At the same
time, only one own round is enough for the second player to remove all the elements: he can make an
opposite operation to the first player due to the condition b; = by. Thus by the lemma 1 the answer is 0
for m > 2. For m = 2 the answer is max(0, min(si, s2)). Time complexity: O(n).

Subtask 3. In the third subtask two own rounds are enough for each player to remove all the elements:
the first player can remove all the numbers that are divisible by b; and are not divisible by b3, and the
second player can do the same using by and by. Thus by the lemma 1 the answer is 0 for m > 3. For m < 3
you can either solve the problem recursively by considering each possible game scenario or consider up to
8 cases manually. Time complexity: O(n).

Subtask 4. In the fourth subtask no additional observations are required. The entire game can be
simulated recursively: you can represent the state of the game as a pair (operations, pos), where operations
is an array with chosen operations and pos is a current round. Then at each state of the recursion you
can try to make all two possible operations and select the best one. The total number of states is O(2™)
and for each final state with pos = m you can calculate the sum of the remaining elements in O(nm).
Therefore such a solution works in O(2™ - nm).

Subtask 5. In the fifth subtask you can modify recursion in the following way: instead of representing
the state of the game as a pair (operations,pos) you can represent it as a pair (a,pos), where a is an
array with remaining elements and pos is a current round. Then at each state of the recursion you can
try to make all two possible operations and select the best one. The total number of states is O(2™) but
the total size of all arrays a across all states is only O(nm) due to the fact that each initial element of
the array a is contained in exactly m states. Therefore such a solution works in O(2™ + nm). See the
following code on Python for a better understanding.

def solve(a, pos):
if pos == len(b):
return sum(a)
na = [[], [I]
for x in a:
nal[(x % blpos]) == 0].append(x)
return [min, max] [pos % 2] (solve(nal[0], pos + 1), solve(nal[l], pos + 1))

, m = map(int, input().split())
list(map(int, input().split()))
list(map(int, input().split()))
print(solve(a, 0))

n
a
b

Page 6 of 12

European Junior Olympiad in Informatics 2022
Ukraine (online), 19-25 September 2022

Subtask 6. In the sixth subtask you can notice that the majority of O(2™) states inside the recursion
have an empty array a that allows to immediately return 0 as a result:

def solve(a, pos):
if len(a) == 0:
return 0O

Such optimization gives time complexity O(nm) which is enough for the sixth subtask.

Subtask 7. In the seventh subtask a; > 1 that means that the final sum of the remaining elements is
always non-negative. It simplifies the proof of the lemma 1 because now the goal of the first player is to
remove all the elements from the array a. Also it can be proven that the answer is equal to 0 when m > 19
under the constraint a; < 10. Such proof is left as an exercise for the reader (see bonus section). Such a
fact means that the only difference from the fifth subtask is that we can just output 0 when m > 20.

Subtask 8. In the eighth subtask the second player can always remove all the elements by making the
opposite second operation. It means that the answer is always non-negative. When the answer is positive
the only strategy for the second player is to repeat the corresponding operations of the first player. It
allows us to speed up the solution from the fifth subtask to O(2"/2 + nm) which is ok for the m < 40.
See the solution for the next subtask to understand what to do in case m > 40.

Subtask 9. For the full solution you can notice that O(logn) own rounds are enough for each player to
remove all the elements. Indeed, at each round one of the two possible operations removes at least half of
all remaining elements, therefore [logy n] rounds are always enough to remove all the elements. It means
that the only difference from the sixth subtask is that we can just output 0 when m > 100 by the lemma
1.

Bonus. What is the maximum value of m where the answer is not equal to zero?

Page 7 of 12

European Junior Olympiad in Informatics 2022
Ukraine (online), 19-25 September 2022

Problem E. Longest Unfriendly Subsequence

Author: Anton Trygub
Developer: Anton Trygub
Editorialist: Anton Trygub

Subtask 1. Any subsequence of such a sequence is nondecreasing. Unfriendly sequences, however, do not
allow equality of two adjacent elements, so any unfriendly subsequence of this sequence has to be strictly
increasing. This means, that each value will appear in such a subsequence at most once.

But then we can delete duplicates and take a subsequence containing precisely one occurrence of each
element that appears in a. As all elements of this subsequence are distinct, it’s unfriendly. So, the answer
for this subtask is just the number of distinct elements in a. We can find it in O(n).

Subtask 2. We can just consider all possible 2 — 1 nonempty subsequences of a, check each for
unfriendliness in O(n) time, and output the length of the longest unfriendly. This takes O(2"n) time.
As t < 10, this easily fits in TL for n < 8.

Subtask 3. Clearly, for n = 1 answer is 1, and for n > 2 it’s > 2 (as any subsequence of length exactly
2 is unfriendly).

Let’s use dynamic programming. Let dpl[i][j] for 1 <i < j < n denote the length of the longest unfriendly
subsequence of a, in which the last element is a;, and the second last is a;. If a; = aj, dp[i][j] = 0.
Otherwise, dpli][j] = max(2, maxi<k<;dp[k|[i] + 1)) over k for which a; # a; and a; # a;. We can
calculate this dp table in O(n?) for a single test case, which is fast enough.

Subtask 4. Let’s look at any unfriendly sequence by,bo,...,b, such that for all ¢ 1 < b < 3.
Each 3 consecutive elements of b are distinct, therefore b;, b;11,b; 12 are some permutation of 1,2,3 for
1 < i <n—2. Then, however, b;;1,b;12,b;13 also are such a permutation. As b; and b;13 both differ from
two distinct values (b;11,bi42), they must be equal. So, b; = b;43 for each i; b has to be periodic with
period 3.

Then, just try each possible start of the subsequence b p1,p2,ps — every permutation of (1,2,3). For
each of them, take elements p1, p2, p3, p1, P2, . .. as soon as you see them. Output the largest answer over
these 6 options.

Subtask 5. Let’s go through our sequence a from left to right and keep the following dynamic
programming table: let dp[z][y] denote the length of the longest unfriendly subsequence of a up to this
moment, whose last element is y, and second last element is x. Initially, we can set each value in this
table to —INF (where INF = 10, for example). Let’s also keep track of what elements have already
appeared in our sequence.

It turns out that it’s easy to update this table: when we are at position ¢, we just need to update the
values of dp[z][a;] for each = # a;. If hasn’t appeared before, there is no subsequence ending with (z, a;),
otherwise, do dp[z|[a;] = max(dp[z][a;],2). Then, we need to do dp[z|[a;] = max(dp[z][a;], dp[y][x]+1) over
all y # x, a;. Updating this table after seeing the next element takes O(M AX?), with overall complexity
O(M AX?n) per test case, which fits easily.

Subtask 6. Let’s modify our algorithm from Subtask 5 a little. Clearly, we can assume that elements
are in the range [1, n] (just map k-th smallest value to k, we don’t care about the exact values of elements,
we only care about which elements are equal to which). Now, again, let’s keep dp[z|[y] for # y: the
length of the longest unfriendly subsequence of a up to this moment which ends with (z,y). The difficulty
lies in updating dp[z][a;] = max(dp[z][a;], dp[y][x] + 1) over all y # x,a;: this can take O(n?), which for
n = 10000 has no chance of passing.

But let’s note that we don’t actually need all the values dp[y][x] to update this table. We need the largest
value among the ones for which y # a;. Then, for each y let’s keep two values x1 # y,x2 # y, such that
the values dp|x1][y], dp[z2][y] are the largest among all dp[z|[y]. Then, we would just have 2 (at most)
candidates to check. After we do this for each y, we will recalculate the best choices for the previous
element for a;.

Page 8 of 12

European Junior Olympiad in Informatics 2022
Ukraine (online), 19-25 September 2022

This way, processing new element takes O(n), and the entire algorithm runs in O(n?) time, which passes
easily.

Subtask 7. For this subtask, we will have to analyze the structure of the longest unfriendly subsequence
a bit more.

Consider the longest unfriendly subsequence of a. Suppose that it contains a;. What could be the previous
element before a;, if there is any? Clearly, if it’s some value z, it’s optimal to take the last occurrence of
x before a;.

What we did in previous subtasks was going through all possible candidates for . However, as it turns
out, we don’t need that many. Among all last occurrences of elements before a;, consider 5 rightmost (if
there are at least 5). Suppose that we don’t take any of those as our z. Then, I claim, we can extend our
unfriendly subsequence by inserting one of these rightmost 5 last occurrences into it.

Indeed, two (or less, if there are less than two) elements to the left of a; in this subsequence, a;, and the
element to the right, if there is any. They are the only prohibited values for the = (if we want to insert x
right before a; in this subsequence). Then one of those 5 last occurrences would not be prohibited, and
the subsequence wouldn’t be the longest possible.

So, for each a;, we know the set of at most 5 possible candidates for the previous element in the longest
unfriendly subsequence. Therefore, we can once again use dynamic programming of form [cand]|[last],
indicating the length of the longest possible unfriendly subsequence, ending in (@cqnd, Giast)- For each
last, we have at most 5 cand. So, when processing new last, we need to do just M AGIC? checks (where
MAGIC =5).

We can keep this dp in maps, and keep the last occurrence of each element with a simple set. The total
complexity is O(n(5? + logn)).

Page 9 of 12

European Junior Olympiad in Informatics 2022
Ukraine (online), 19-25 September 2022

Problem F. LCS of Permutations

Author: Anton Trygub
Developer: Anton Trygub
Editorialist: Anton Trygub

Subtask 1. For a = b = 1,¢ = n, there always is a solution. It’s enough to take p = (1,2,...,n) and
g=r=(Mnmn-—1,...,1).

Subtask 2. Let’s notice the simple property:

Let a,b be any sequences of length n consisting of integers from 1 to n, and p be any permutation of
integers from 1 to n. Then, we have the following property:

hd LCS(CL’ b) = LCS((pappaQa cee 7pan)) (pb17pb2a e apbn))

Indeed, we don’t care about which element is larger than which. We only care about which element is
equal to which.

With that in mind, we might notice that if there is such a triple of permutations p, g, r, then there also is
such a triple with p = (1,2,...,n). This allows us to fit the brute force in time.

Let’s try all candidates for permutations ¢, r (there are (n!)? such pairs), and for each pair of candidates,
candidate pairwise LOSs (we can find the LC'S of two permutations in O(n?), for example). For each
triple (a,b,c) that we saw, memorize any triple of permutations (p, ¢,) that produced it. This allows us
to solve the subtask with preprocessing, taking O((6!)62), which passes easily.

Subtask 3. Note that if LC'S(q,7) = n, we must have ¢ = r, so we also must have a = b. We are still
considering p = (1,2,...,n). Also, note that LC'S((1,2,...,n),q) is just equal to the length of the longest
increasing subsequence of q.

Now, we need to check if there exists a permutation with LIS(q) = a (from now on, by LIS(q) I will
denote the length of the longest increasing subsequence of ¢). It turns out that it exists for each 1 < a < n.
Indeed, it’s enough to consider ¢ = (n,n —1,...,a+2,a+1,1,2,...,a).

Subtask 4. If LCS(p,q) = 1, then ¢ must be the reverse of p. In our case, we would have
p=(1,2,...,n),g= (n,n—1,...,1). Note that LCS((n,n—1,...,1),r) = LDS(r) for any permutation,
where by LDS(r) we denote the length of the longest decreasing subsequence of r.

So, we just need to determine if there exists a permutation of length n with LIS = b and LDS = c. Here,
the Erdds—Szekeres theorem might be useful. It states that in any sequence with length (r — 1)(s — 1),
there is an increasing subsequence of length r, or a decreasing subsequence of length s. We will use it
in the following form: LIS(p)LDS(p) > n (indeed, if LIS(p)LDS(p) < n — 1, then the subsequence of
length n would have an increasing subsequence of length LIS (p)+1, or a decreasing subsequence of length
LDS(p) + 1.

So, we must have bc > n. Is this condition sufficient? Sadly, no. Consider b = ¢ = n, for example. We
would have to have p = ¢ = r, but p # ¢ (for n > 1).

Then, we might notice the second condition: LC'S(p) + LDS(p) < n + 1 for any permutation p of length
n. Indeed, any increasing subsequence may have at most 1 common element with any decreasing one, so
at most one of n elements can contribute to both LCS and LDS, and others can contribute to at most
one of them.

So, we get: b+ ¢ < n+ 1,bc > n. Are these conditions sufficient? Turns out, yes. Consider permutation
c,e—1,...,1,2¢,2¢—1,...,¢+1,3¢,...,bc,bc —1,...,bc — c+ 1 of integers from 1 to bc. It’s easy to see
that its LIS is b, and its LDS is c. (For example, the argument for LDS: it clearly has an increasing
subsequence ¢, 2c, ..., bc, but also is split into b decreasing blocks, none of which can contain more than
one element from LIS).

Page 10 of 12

European Junior Olympiad in Informatics 2022
Ukraine (online), 19-25 September 2022

Consider some subsequence of this permutation, which contains elements ¢, 2¢, ..., bc, as well as elements
¢,c—1,...,1 (cin written twice, yes) — n—1 elements in total. Any such subsequence will have LIS = b
and LDS = c. Asb+c—1 < n < be, we can take some extra n — (b+ ¢ — 1) elements of this permutation,
and obtain a sequence with LIS = b and LDS = c of length n. Then, we can just "compress"the sequence
to the permutation by mapping different values to 1,2,...,n in the relative order.

Subtask 5. In some sense, this subtask was included so that participants would be able to check if their
criteria were correct, basically guessing before getting to the actual construction. That’s what we are
going to do here, leaving the proof and the construction for the subtask 6.

Let’s try to guess these criteria. We already know some criteria for the case a = 1. Maybe we can generalize
them somehow?

First, let’s try to get something similar to LIS(p) + LDS(q) < n + 1. Consider common subsequences
of (p,r) and (gq,r). If their lengths are b, ¢ correspondingly, they must have at least b + ¢ — n elements
in common. These common elements would form a common subsequence of p,q, so b+c—n < a, or
b+c<a+n.

Now, let’s try to get something similar to LIS(p)LDS(p) > n. 1 claim, that
LCS(p,q)LCS(q,7)LCS(p,7) > n. Proof: suppose that abc < n. As p = (1,2,...,n), we get that
LiS(q) = a = LDS(q) > 2 > bc+ 1. Consider some decreasing subsequence of ¢ of length bc + 1.
Let’s look at how the elements of this subsequence are situated in . No b+ 1 of these elements can form
an increasing subsequence in 7 (as then we would have LC'S(p,r) > b+ 1. No ¢+ 1 of these elements can
form a decreasing subsequence in r (as then we would have LC'S(q,7) > ¢+ 1. But at least one of these
has to hold, by the Erd6s—Szekeres theorem! Contradiction.

So, we found two necessary conditions:

e b+c<a+n

e abc>n

It turns out that these conditions are actually sufficient. We will prove this in the next section.

Subtask 6. Let’s prove that for such a, b, ¢, n there always exists such a triple of permutations. We will
prove this by induction. We already know this is the case if a = 1, and it’s clear for n = 1. Now, suppose
that it’s true for all tuples (a1,b1,c1,n1) with a1 < a,by <b,c1 <c¢,np < n.

Suppose that b+c < a+n and abc > n. If a > 1 and (a—1)(b—1)(c—1) > n—1, then we know that there
is such a triple of permutations for tuple (a — 1,b — 1,¢ — 1,n — 1) as well. Consider these permutations
p1,q1,71- Let’s append n to each of them. Clearly, the LCS of each pair will increase by precisely 1, so
we would get the desired outcome.

Now, let’s provide a construction for the case abc = n. Let’s take:

e p=(1,2,...,abc)

e q=(abc—a+1,abc—a+2,...,abc,abc —2a+ 1,abc —2a+2,...,abc —a,...,1,2,...,a)

(be increasing blocks, each of length a)

o r = (ac,ac—1,...,1,2ac,2ac—1,...,ac+1,... abc,abc — 1,... abc — ac+ 1)

(b decreasing blocks, each of length ac)

It’s easy to see that LIS(q) = a and LIS(r) = b, it only remains to prove that LC'S(q,r) = c¢. Sequence

ac,(a—1)c,...,2¢c, cis a subsequence of both. Suppose that some sequence of length ¢+ 1 is a subsequence
of both. If some two elements = < y of it are from different blocks of length ac (here I mean blocks
l[ac,ac—1,...,1],[2ac,2ac—1,... ac+1],...,[abc,abc—1,... abc—ac+1], then in g x goes after y, and in

r before, which is impossible. So, they all must be from the same block, say, [kac, kac—1, ..., (k—1)ac+1].

Page 11 of 12

European Junior Olympiad in Informatics 2022
Ukraine (online), 19-25 September 2022

Then, this subsequence must be decreasing. However, the elements [kac,kac — 1,...,(k — 1)ac + 1]
in ¢ go in order ([kac — a + 1,kac — a + 2,...,kac], [kac — 2a + 1,kac — 2a + 2,...,kac — al,...,
[(k—1)ac+ 1,(k — 1)ac+ 2,...,(k — 1)ac + a]) — that is, ¢ increasing blocks, each of size a. So, it
can’t have decreasing subsequence of length ¢ + 1 (as some two elements would have to be in the same
block). Contradiction.

How to use this construction for n = abc to get construction for smaller n, the same way as we did in the
case a = 17 Let’s select elements 1,2,...,a, 1,ac+1,2ac+1,...,(b—1)ac+1, ac—c+1,ac—2c+1,...,1
(1 appears in all 3 of these sequences). We want to take some subset of size n of integers from 1 to abe,
containing all the a + b+ ¢ — 2 elements above, and remove from each of p, ¢, r all elements not contained
in this subset (and later "compress"by mapping k-th largest number among selected to k). If we do this,
we will get precisely LC'S(p, q) = a, LCS(p,r) = b, LCS(q,r) = ¢). We can do this when a+b+c—2 < n.

If we haven’t succeeded, we have the following conditions:

e (a—1)+(b—-—1)+(c—1)>n

e (a—1)(b—1)(c—1)<n-—-2
When is xzyz < 4+ y + z — 2 possible in general for positive integers ¢ < y < 27 If x > 2, we get
xyz > 4z > x+y+z > x+y+2z—2 s0o we must have z = 1, or yz < y+ 2z — 1. For y > 2

we get yz > 2z > y+ 2z > y+ 2z — 1, so we must have y = 1. In this case, we get a = b = 2, and
c+1>n,c—1<n-—2, implying ¢ =n — 1. So, the only remaining case is (2,2,n — 1,n) (when n > 3).

For this case, there is a simple construction:

e p=1(1,2,...,n)
e g=(n,n—1,...,54,3,1,2)

e r=(nn—1,...,54,1,3,2)

We have covered all cases, and provided an algorithm how to construct such permutations, so we are done.

Page 12 of 12

