
EDITORIAL
JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 1

Problem: AB

Proposed by: prof. Ionel-Vasile Pit,-Rada

We use the terms AB-permutation and AB-transposition for permutations and transpositions of
the K elements which obey the AB matrix constraints. (A transposition is a permutation where
exactly two elements are swapped, such as (12435).) We will show that if an AB-permutation
exists, then an AB-transposition also exists.

Recall that any permutation consists of a composition of cycles. For example, the permutation
(42613578) consists of the cycles 3→ 5→ 6→ 3 and 1→ 4→ 1, as well as the single-element
cycles 2, 7 and 8. For any AB-permutation P we will show how to find an AB-transposition
between two elements on the same cycle. Once we find it, we simply put the other elements
of P back on their original positions. This will not break any constraints, because the original
matrix was an AB-matrix.

So let us consider one of the cycles in P , call it x0,x1, . . . ,xc−1,xc = x0. Let [ai , bi] be the range
of values that can replace xi in the matrix. Obviously, ai ≤ xi ≤ bi for all i. The values of ai ,bi
can be deduced from the values neighbouring xi : ai is the maximum of the values to the left
and above xi (if they exist), plus one, and bi is the minimum of the values to the right and below
xi (if they exist) minus one.

Assume without loss of generality that x0 is the minimum value (we can rotate the cycle
if not). Then the values x0,x1, . . . will increase for a while, until at some point xd there will
necessarily exist a decrease, xd < xd−1 (d can be equal to c if the cycle consists of exactly one
increasing streak). So there exists some i ≥ 1 such that xi−1 ≤ xd < xi . We will show that the
transposition (xi ,xd) is an AB-transposition. Let us collect some useful inequalities.

(1) ai ≤ xi ≤ bi , because xi obviously obeys its own range.
(2) ad ≤ xd ≤ bd , similarly.
(3) xi−1 ≤ xd < xi ≤ xd−1, by our choices of d and i.
(4) ai ≤ xi−1 ≤ bi because xi−1 fits in place of xi in the cycle.
(5) xd−1 ≤ bd because xd−1 fits in place of xd in the cycle.

From (1), (3) and (4) we get ai ≤ xi−1 ≤ xd < xi ≤ bi . Therefore, xd obeys the constraints of
xi . Conversely, from (2), (3) and (5) we get ad ≤ xd < xi ≤ xd−1 ≤ bd . Therefore, xi obeys the
constraints of xd . By definition, this means that (xi ,xd) is an AB-transposition.

Now, we will explain how to determine whether there is any AB-transposition. We will
iterate over the values X in increasing order. While iterating, we will keep a stack with all the
previous positions in which the current position can still be placed. In other words, at a step of
the iteration xi , we will keep a stack of all previous positions xj for which xi ≤ aj . Therefore
xi can be placed in place of all positions xj from the stack. For an AB-transposition, we need
to check whether there is any xj that is large enough to fit in [ai , ai]. For this, it is sufficient to
check the maximum value of the all xj , which is the actually the top of the stack.

Now, regarding keeping the stack up-to-date. At each iteration step, we need to eliminate
all xj which have a bj < xi . It is not necessary to remove them from the middle of the stack,
but instead we will remove them from the top of the stack in a lazy manner. As such, we will
pop all tops of the stack that have bj < xi . Once a top exist for which xi ≤ bj , we check that
top whether it generates a swap with xi . If yes, then the solution is not unique. If not, then we
continue to the next iteration.

Here is pseudo-code following this idea:
(1) Iterate over x1, . . . ,xk , keeping a stack S.

1

EDITORIAL JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 1 2

(2) Suppose we are considering xi . While S is not empty:
(a) Let xt be the top element of S.
(b) If bt < xi then eliminate xt and re-try this loop.
(c) If xt < ai then add xi to S and exit this loop.
(d) Otherwise, output the pair (xt ,xi) as being AB-transposition.

(3) If no pair has been found then conclude that no AB-transpositions.

Solution proposed by Tamio-Vesa Nakajima. Consider some query. Suppose that the query
deals with x1 < . . . < xk. For each xi , let [li , ri] be the interval of values that could replace xi
while maintaining the orderedness properties of the matrix. (Observe that li is the maximum of
the values above and to the left of xi plus one, and ri is the minimum of the values to the right
and above of xi minus one.)

Theorem. The elements x1, . . . ,xk can be reordered while maintaining the orderedness properties of
the matrix if and only if a pair (xi ,xj) exists that can be swapped while maintaining these properties.

Thus it is sufficient to look only for a pair of elements that can be swapped. We can then use
the following stack-based algorithm:

(1) Iterate over x1, . . . ,xk , keeping a stack S.
(2) Suppose we are considering xi . While S is not empty:

(a) Let xt be the top element of S.
(b) If rt < xi then eliminate xt and re-try this loop.
(c) If xt < li then add xi to S and exit this loop.
(d) Otherwise, output the pair (xt ,xi) as being swappable.

(3) If no pair has been found then conclude that no swappable pair exists.
Why is this algorithm correct? We will show that the algorithm is sound (when it outputs a

pair it always outputs a correct pair) and complete (if a swappable pair exists then the algorithm
must output some pair).

Soundness: Observe that if we output the pair (xt ,xi) then we know that xi ≤ rt and li ≤ xt
Furthermore we know, by the order in which we go through the elements, that xt ≤ xi ,
and thus lt ≤ xt ≤ xi ≤ ri . All of this information is sufficient to deduce that we can swap
xi with xt.

Completeness: First observe that if some xt is eliminated from the stack by some xi , then
xt < xi and rt < xi ≤ ri . Furthermore xi must eventually be added to the stack (unless we
already output some pair). This means that after some xa was added to the stack, some
xa′ must always exist in the stack, such that xa < xa′ and ra < ra′ .

Now suppose we can swap some pair, and suppose that (xa,xb) is the swappable
pair that minimizes the value of xb, and if there are several such pairs. If we reach xb
in the iteration (if we haven’t then we have already outputted some pair and there is
nothing to prove) then at some point xa was added to the stack; thus as shown above
the stack contains some xa′ where xa < xa′ and ra < ra′ . Since we know already that
lb ≤ xa and xb ≤ ra (since we can swap xa and xb) it follows that lb ≤ xa′ < xb ≤ rb and
la′ ≤ xa′ < xb ≤ ra < ra′ — in other words some element xa′ exists in the stack that can be
swapped with xb.

If this element is ever at the top of the stack then we will surely output the pair
(xa′ ,xb). Until the element reaches the top of the stack, if xt is the element at the top
of the stack, then it is not possible for xt < lb (since lb ≤ xa′ < xt) — thus we must
either output some other pair, or pop an element of the stack. It follows that we must
eventually output some pair, as required.

EDITORIAL JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 1 3

Problem: MPF

Proposed by: prof. Daniela Lica

Consider the following notations:
• VMAX the maximum value that can be assigned to X, with respect to the problem’s

constraints;
• Maxp[i] the largest prime divisor of the positive integer i, where 1 ≤ i ≤ VMAX. This

can be computed in O(VMAX logVMAX) time complexity using an algorithm similar
to the Sieve of Eratosthenes. When marking elements as non-prime, we save the prime
number that divides it. Because the primes are traversed in increasing order, the last
saved divisor is also the largest. Thus, using operation 1 once, a positive integer X
becomes X/Maxp[X];
• Level[i] the sum of the exponents from the prime factor decomposition of the positive

integer i, where 1 ≤ i ≤ VMAX (this can be computed along with the MaxP [] array, such
that Level[X] = 1 +Level[X/Maxp[X]]). In fact, for an integer i, Level[i] represents the
minimum number of operations of type 1 that need to be applied successively on i for it
to become equal to 1 and, at the same time, the minimum number of type 2 operations
that need to be applied successively on 1 to obtain i;
• Query(i, j) the minimum number of operations that need to be applied successively on
i for it to become equal to j. Obviously Query(i, j) = Query(j, i).

Subtask 1. We precompute the results for each possible pair of numbers, with approximately
O(VMAX2T) time complexity, where T is the number of prime numbers less than or equal to√
VMAX. We use a 2D array ans[i][j] = k, where Query(i, j) = Query(j, i) = k. Every i-th line

can be computed starting using a fill algorithm, starting from the number i with the help of
a queue data structure (FIFO), processing each number from 1 to VMAX exactly once. When
processing a state X, we try to consider state X/Maxp[X] (type 1 operation applied on X) and
all states j ·X, where j is a prime number, j ≥Maxp[X] (type 2 operation applied on X).

For each query, the output can be provided in O(1) time. Final time complexity for answering
all queries is O(Q).

Subtask 2. For each query we will compute the prime factor decomposition of the two numbers
(X,Y) in O(

√
VMAX) time complexity. Consider the number Z the maximum number obtained

as an intermediary value in both transformations of X to 1 and Y to 1. The value of Z is in
fact the product, in order, of the smallest common prime factors of X and Y . The answer for
Query(X,Y) = (Level[X]− Leve[Z]) + (Level[Y]− Level[Z]). This is because it takes Level[X]−
Level[Z] operations of type 1 to transform X into Z, and then another (Level[Y] − Level[Z])
operations of type 2 to transform Z into Y . The final complexity for all queries is therefore
O(Q ·

√
VMAX).

Subtask 3. Similarly to the previous approach, for each query pair (X,Y), we will determine
the value of Z. The approach will follow the transformation of X and Y to the value 1, until
a common value Z is found. While the two values X and Y are different (i.e. a Z value has
not been found), we will pick the maximum of X and Y and apply an operation of type 1 to
it, thus getting closer to the value of Z. The maximum complexity of one individual query is
determined by the maximum number of prime factors that a value can have - O(log2VMAX).
The final complexity is O((Q+VMAX) · log2VMAX)

EDITORIAL JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 1 4

Problem: Roboclean

Proposed by: prof. Zoltan Szabo

Solution proposed by Tamio-Vesa Nakajima. First, observe that the parity of the length of any
path from some point in the grid to some other point in the grid is fixed. To see why, consider a
checkerboard pattern overlaid on top of the grid. If the colour of the starting cell is equal to the
colour of the ending cell, then any path between them has odd length; otherwise, it must have
even length. Thus, observe that if we can always create a path of length N ×M or N ×M − 1,
then we will always create a path of optimal length — if we create one of length N ×M then
it is obviously the longest possible path, and if it is of length N ×M − 1 then a longer path
of length N ×M is impossible due to parity. We will now describe a recursive algorithm that
always generates such a path.

First, assume without loss of generality that we want to create a path between (1,1) and (i, j),
and also that i ≥ j, and if i = j then N ≤M. By rotating and flipping the matrix it is always
possible to reach this case. Note that since (i, j) , (1,1) it follows that i > 1. Our algorithm will
have two cases.

Case 1, n > 2: Observe that by our conditions it is impossible for (i, j) = (2,M) or for
i = 1. In this case we can therefore always end our path with the sequence (2,M)→
(1,M)→ . . .→ (1,1). Thus we can reduce to the case of finding a path from (i, j) to (2,M)
without using the first line — or equivalently finding a path from (i −1, j) to (1,M) in
an (N − 1)×M matrix.

Case 2, N = 2: In this case we can prove that either (i, j) = (2,1) or (i, j) = (2,2). In either
case our path is (i, j)→ . . .→ (2,M)→ (1,M)→ . . .→ (1,1).

The algorithm has the following steps:
(1) the matrix is rotated until the exit cell lands on (1,1), i.e. L2 = 1 and C2 = 1;
(2) the matrix is then transposed (i.e. cell (i, j) becomes (j, i)) in order to obtain L1 ≥ C1, and

if L1 = C1 we want to obtain N ≤M;
(3) we add to the path the sequence of cells (1,1), (1,2), . . . , (1,M), (2,M), and from here we

recursively solve the smaller task of finding the best path from (2,M) to (L1,C1), which
is equivalent to finding a path from (1,M) to (L1 − 1,C1) in a (N − 1)×M matrix;

(4) the steps are repeated until we obtain a matrix with only 2 rows for which we construct
the path using the method mentioned in the second case of the above demonstration.

A careful implementation is needed to remap the North, South, East and West directions
when rotating or transposing the matrix.

We will look at the path generated by the proposed approach on a couple of examples.

Example 1. Considering N = 6, M = 9, the starting cell at (4,6), and the exit cell at (6,1).

All cells are thus cleaned by the robot and the sequence of moves is the following:
ENWWSSEEENNNWWWWSSSSEEEEENNNNNWWWWWWSSSSWNNNNNWSSSSS

EDITORIAL JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 1 5

Example 2. Considering N = 5, M = 9, the starting cell at (2,3), and the exit cell at (5,9).

In this example a single cell is left uncleaned. The sequence of moves is as follows:
ESWWWNNEEEESSSWWWWSEEEEENNNNESSSSENNNNESSSS

Solution proposed by Cristian Frâncu. An alternative solution, to compute the path in reverse:
(1) At each step consider the (at most) four possible moves to the neighboring cells;
(2) Choose the cell that’s farthest from the robot’s start position, using the Euclidean

distance;
(3) In case of equal distance choose the cell that has more possible following moves (i.e. more

adjacent neighbors not yet in the path);
(4) Repeat until reaching the starting point.

This algorithm generates the same paths as the previous solution on the examples mentioned
above.

EDITORIAL JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 1 6

Scientific Committee

The problems were prepared by:
• Gheorghe-Eugen Nodea (chair) - “Tudor Vladimirescu” National College, Târgu Jiu
• Adrian Panaete - “A.T. Laurian” National College, Botos, ani
• Daniela Elena Lica - Centre of Excellence, Ploies, ti
• Ionel-Vasile Pit, -Rada - “Traian” National College, Drobeta Turnu Severin
• Zoltan Szabo - County School Inspectorate, Mures,
• Radu Voroneanu - Google
• Vlad Gavrilă - University of Cambridge
• Emanuela Cerchez - “Emil Racovit, ă” National College, Ias, i
• Marinel S, erban - “Emil Racovit, ă” National College, Ias, i
• Mihai Bunget - “Tudor Vladimirescu” National College, Târgu Jiu
• Tamio-Vesa Nakajima - Oxford, Computer Science department, UK
• Bogdan Iordache - University of Bucharest
• Cristian Frâncu - Clubul Nerdvana Bucures, ti
• Cosmin Pit, Rada - Bolt
• Ciprian-Daniel Ches, că - “Grigore C. Moisil” Technological High School, Buzău
• Marius Nicoli - “Frat, ii Buzes, ti“ National College, Craiova
• Dan Narcis Pracsiu - “Emil Racovit, ă” Theoretical High School, Vaslui
• Flavius Boian - “Spiru Haret” National College, Târgu Jiu
• Petru Simion Oprit, ă - Liceul Regina Maria Dorohoi
• Andrei-Costin Constantinescu - ETH Zurich

EDITORIAL
JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 2

Problem: Kaguya Wants to Receive Flowers

Proposed by: Vlad Gavrilă

Subtask 1.

For this subtask, there is only one flower parcel and we need to find the distance to it from
all other parcels. Let’s say the flower parcel is located at position (x,y). For a parcel (r, c), the
distance from that parcel to the flower parcel will be |x − r |+ |y − c|, so we print that.

Subtasks 2 and 5 — O(N2F logF).

For the second subtask, the limits are generally small, so any polynomial solution will be
accepted. We present such a solution that also solves subtask 5.

First, we create an array P containing all (x,y) parcels that contain flowers. Then, for each
parcel (r, c) for which we want to determine the answer, we will sort array P increasingly by the
distance between the current parcel (r, c) and each parcels in P . The answer for cell (r, c) will be
the sum of distances between itself and the first K elements of P .

Since sorting (and computing the distances) takes O(F logF), and we need to do this O(N2)
times (once per cell), the total time compexity is O(N2F logF).

Subtask 3 — O(N3).

Let (r, c) be a fixed point in the matrix. Note that all the flower parcels at distance d from
(r, c) lie on a diamond-like edge. All the flower parcels closer than d lie inside the diamond.
We denote this diamond (including both the edge and inside) as (r, c,d) and refer to d as the
radius. We observe that, for any cell (r, c), the flower parcels closest to (r, c) will be included in
the smallest radius diamond centered in (r, c).

The following algorithm follows for computing the answer for parcel (r, c): we start with a
diamond of size 1, and increase it until it contains at least K flowers, adding the corresponding
distances to the answer as we go. As we can increase this diamond at most 2N times, we must
do each increase in O(1) time in order to have our final O(N3). Let’s introduce the following
concept:

Interval sums on an array.

Given an array A, we wish to quickly answer queries of the form sum(i, j) = Ai + · · ·+Aj . To do
this, we precompute partial sums array of A, namely Pi = A1 + · · ·+Ai . Then sum(i, j) = Pj − Pi−1.

Putting it all together.

Let’s say we currently have diamond (r, c,d) that contains f < K flowers. We therefore need
to increase its size, by adding the edge of the d + 1 radius diamond to our current diamond.
This edge is made up of four contiguous side pieces which are at a 45 degree angle relative to
the sides of the garden, for which we want to know how many flowers (f ′) they contain.

1

EDITORIAL JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 2 2

We can determine this easily using the interval sums concept by considering as ”arrays”
all sets of parcels that form a 45 degree angle ”line” relative to the sides of the garden, and
selecting our edge pieces as intervals from the corresponding ”arrays”. Note that we need to be
careful that our side pieces do not extend beyond the garden’s limit (but we can easily fix that
by cutting them to size).

Finding that our edge contains f ′ flower parcels, we can either still be in need of adding more
flowers (f + f ′ < K), in which case we add f ′ × (d + 1) to our answer, increment d and repeat
the process above, or add (K − f)× (d + 1) to our answer and terminate the computation for our
current parcel.

Subtask 4.

In this particular subtask, we need to find the closest flower parcel to each parcel in the
garden. We can do this by applying Lee’s algorithm1, having as starting points all the parcels
with flowers. The final time complexity is O(N2).

Subtask 6 (and possibly also subtasks 7 and 8) — O(N2 logN).

Assume we had an oracle that could answer the following questions in constant time:

(1) How many flowers are there inside the diamond (r, c,d)?
(2) What is the sum of the distances of those flowers from (r, c)?

Then an O(N2 logN) algorithm follows easily: for every point (r, c), run a binary search to
find the smallest radius d such that (r, c,d) contains at least k flowers. If the diamond contains
more than K flowers, the surplus necessarily lies on the border (otherwise d would not be
minimal).

How can we answer those questions in constant time? We introduce a set of tools to perform
this task:

Rectangle sums on a matrix.

The above approach generalizes to multiple dimensions. Given a matrix A, we wish to quickly
answer queries of the form:

sum(r1, c1, r2, c2) =
r2∑

i=r1

c2∑
j=c1

Ai,j

Again, precompute the partial sums matrix, namely

Pr,c =
r∑

i=1

c∑
j=1

Ai,j

It follows that sum(r1, c1, r2, c2) = Pr2,c2
− Pr1−1,c2

− Pr2,c1−1 + Pr1−1,c1−1.

Weighted interval sums on an array.

Going back to the array A, consider weighted queries of the form

wsum(i, j,k) = Ai · k +Ai+1 · (k + 1) + · · ·+Aj · (k + j − i)
Precompute the array Q of partial weighted sums, that is

1Lee’s algorithm on Wikipedia

https://en.wikipedia.org/wiki/Lee_algorithm

EDITORIAL JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 2 3

Qi = A1 · 1 + · · ·+Ai · i
It follows that

Qj −Qi−1 = Ai · i +Ai+1 · (i + 1) + · · ·+Aj · j
Each term in this quantity differs from the corresponding term in wsum(i, j,k) by a factor of

k − i. Therefore,

wsum(i, j,k) = Qj −Qi−1 + (Ai +Ai+1 + + · · ·+Aj) · (k − i)
= Qj −Qi−1 + (Pj − Pi−1) · (k − i)

Weighted rectangle sums on a matrix.

We can combine the the previous two sections combine to quickly answer queries like

wsum(r1, c1, r2, c2) =
r2∑

i=r1

c2∑
j=c1

Ai,j · (k + i + j)

We precompute

Qr,c =
r∑

i=1

c∑
j=1

Ai,j · (i + j)

after which

wsum(r1, c1, r2, c2) = Qr2,c2
−Qr1−1,c2

−Qr2,c1−1 +Qr1−1,c1−1 − k · sum(r1, c1, r2, c2)

Triangle sums on a matrix.

We can apply the partial sums approach to right-angled triangles. For every point (r, c), we
precompute the sum of the triangle (r, c)− (1, c)− (1, c+ r − 1). Now, given an arbitrary triangle,
we can extend it upwards to the first row, using a rectangle and a second triangle. We can then
compute the sum of the original triangle by taking the difference.

Putting it all together.

We can always decompose our diamond as a set of triangles and rectangles that completely
lie within the garden. As each of the precomputations above is done to answer sum queries on
triangles and rectangles in O(1), we can therefore find the answer for each parcel in O(logN)
(from the binary search on the diamond radius), for a total complexity of O(N2 logN). This
approach is designed to solve Subtask 6 at least, but various implementations can also solve
Subtasks 7 and 8.

Subtask 8 — O(N2), solution proposed by Radu Voroneanu.

Let’s take two adjoining parcels (r, c) and (r ′ , c′), and denote by d the minimum diamond that
contains at least K flowers for parcel (r, c) and by d′ the same for parcel (r ′ , c′). We will prove
that |d′ − d| ≤ 1 by contradiction.

Assume, without the loss of generality, that d′ > d, and that d′ − d > 1. Then, consider dia-
mond (r ′ , c′ ,d′ − 1). Since d′ − d > 1, then d′ − 1− d > 0, therefore diamond (r, c,d) is completely
included in diamond (r ′ , c′ ,d′ − 1). But then, since (r, c,d) already contains at least K flowers (by
definition), it entails that (r ′ , c′ ,d′ − 1) also contains at least K flowers. But this contradicts that
(r ′ , c′ ,d′) is the smallest diamond containing at least K flowers.

EDITORIAL JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 2 4

By using this observation, once we find the answer for a parcel (r, c) to be given by a diamond
of size d, we can only query diamonds (r ′ , c′ ,d − 1), (r ′ , c′ ,d) and (r ′ , c′ ,d + 1) to find the answer
for the adjoining parcels. We can do these queries either by triangle and diamond sums as in
the Subtask 6 solution, or by cleverly removing and adding diamond side pieces as seen in the
Subtask 3 solution, which leads to a faster solution in practice. Both solutions successfully solve
this subtask.

Problem: Lock

Proposed by: Radu Voroneanu

We will start by describing how to calculate the minimum number of incS operations required
for any permutation of the numbers 1 through N , defined as A[1..N]. Let B be the lock’s
displayed code, initially filled with N values of 0. The optimal method of obtaining A from B is
to apply incS in turns, first increasing all required values to 1, then all required values to 2 and
so on. More formally, at a step X (iterating from 1 to N), we will increment all values B[i] for
which X ≤ A[i], thus increasing them from (X − 1) to X. To minimise the number of operations
for each step X, one single incS operation will be used for each continuous sub-string of values
larger or equal to X.

Let us take as an example the permutation [2,4,7,1,5,3,6]. As a first step, we increase
all values of B to 1 using incS(1,7). Then we increase all numbers in B for which their A
equivalent is at least 2. This can be done using two operations incS(1,3) and incS(5,7) and B
thus becomes [2,2,2,1,2,2,2]. After, we increase all required values to 3, using incS(2,3) and
incS(5,7) and B thus becomes [2,3,3,1,3,3,3]. Then, at step 4, we use incS(2,3), incS(5,5) and
incS(7,7) to make B = [2,4,4,1,4,3,4]. At step 5, we use incS(3,3), incS(5,5) and incS(7,7) to
make B = [2,4,5,1,5,3,5]. At step 6 we use incS(3,3) and incS(7,7) to make B = [2,4,6,1,5,3,6].
Lastly, we use incS(3,3) to make A = B. In total, the minimum number of operations is 14.

To ease the explanation, we will extend A with 0’s on both side - i.e. A[0] = A[N + 1] = 0. For
any step X, the number of incS operations required will be equal to the number of continuous
sub-string of values larger or equal to X. This number is equal to the total number of ends
of such sub-strings divided by 2, as each sub-string is determined by two ends (one left and
one right). One such end is defined as two neighbouring values in A, one smaller than X and
the other larger or equal to X. Now, viewing it the other way, you get that two consecutive
values A[i] and A[i + 1] will be the edges of a sub-string in all steps from min(A[i],A[i + 1]) + 1

to max(A[i],A[i + 1]) - or, in other words, a total of
∣∣∣∣∣A[i] −A[i + 1]

∣∣∣∣∣ times. Using this, we can

compute the total number of incS operations as:

#incS =
1
2

N∑
i=0

∣∣∣∣∣A[i]−A[i + 1]
∣∣∣∣∣ =

1
2

N∑
i=0

(
A[i] +A[i + 1]− 2 ∗min(A[i],A[i + 1])

)
Let CNT be an array in which CNT [i] represents the number of neighbours that value i has

in A which are larger than i. For example, for the permutation [2,4,7,1,5,3,6], we have that
CNT = [2,1,2,1,0,0,0] showing the fact that 1 has 2 larger neighbours (7 and 5), 2 has one
single larger neighbour (just 4), and so on.

Firstly, the sum of values in CNT has to be equal to N − 1. With the help of CNT , we can
open the brackets in the above sum and obtain:

#incS =
N∑
i=1

A[i]−
N∑
i=1

CNT [i] ∗ i

Now, going back to the original problem, which asks that the number of incS operations is
exactly equal to M. We can rewrite the equation above as:

(1)
N∑
i=1

CNT [i] ∗ i =
N ∗ (N + 1)

2
−M

EDITORIAL JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 2 5

We will define this as the CNT-sum of the permutation. We will look at the minimum and
maximum value that this sum can take. The minimum CNT-sum is obtained putting as many
larger values towards the beginning of the array - i.e. either CNT = [2,2, . . . ,2,0,0, . . . ,0] or
CNT = [2,2, . . . ,2,1,0,0, . . . ,0] depending on whether N is odd or even. The maximum CNT-sum
can be obtained from CNT = [1,1, ...,1,0]. One important observation is that any intermediary
sum, between the minimum and maximum, can be obtained from a valid permutation.

Let S = N ∗(N+1)
2 −M be the required CNT-sum. We will now try to construct the permutation

from left to right, trying to put the minimum possible value at each position.
We will first try to set A[1] = 1. For this to work, we need to set CNT [1] = 1, because

A[1] has one single neighbour. The minimum CNT-sum can be obtained by setting CNT =
[1,2,2, . . . ,2, (1),0,0, . . . ,0] depending on whether N is odd or even, and the maximum can be
obtained by setting CNT = [1,1, . . . ,1,0]. We can set CNT [1] = 1 if and only if S is in the
determined by the minimum and maximum. If minimum ≤ S ≤ maximum, then we can set
CNT [1] = 1 and therefore we can set A[1] = 1. if not, it means that CNT [1] = 2 and we will
continue by trying to set A[1] = 2. This in turn would require that CNT [2] = 1 and the process
is repeated until a valid value is found for A[1].

Also in a similar manner, we we continue to try out the value of A[2], then A[3] and so
on. While building, once we fixed the value for a position A[i], we have to be careful at what
CNT [A[i + 1]] can take. For example, if CNT [A[i]] = 0 (i.e. zero neighbours larger), then
CNT [A[i + 1]] has to be either 1 or 2. Similarly, if CNT [A[i]] = 2, then CNT [A[i + 1]] has to be
0 or 1.

Let us take an example where N = 8 and M = 13. Thus, S = 8∗9
2 − 13 = 23. We try to

set A[1] = 1 and would need CNT [1] = 1. The minimum CNT-sum will be obtained when
CNT = [1,2,2,2,0,0,0,0] and will have a value of 1∗1+2∗2+3∗2+4∗2+5∗0+6∗0+7∗0+8∗0 = 19.
The maximum CNT-sum will be obtained from CNT = [1,1,1,1,1,1,1,0] and will have a value
of 28. We see that 19 ≤ S = 23 ≤ 28 and conclude that therefore conclude that we can set
CNT [1] = 1 and A[1] = 1. Moving forward, we try to set A[2] = 2. Again, the minimum CNT-
sum that can be obtained is 22, obtained from [1,1,2,2,1,0,0,0]. The maximum CNT-sum is
28, obtained from [1,1,1,1,1,1,1,0]. Again, 22 ≤ S ≤ 28 so we can set CNT [2] = 1 and A[2] = 2.
We continue to try to set A[3] = 3. The minimum CNT-sum is CNT = [1,1,1,2,2,0,0,0] with a
value of 24. We now see that 24 ≰ S, so we cannot set CNT [3] = 1. We therefore set CNT [3] = 2
and continue to try to set A[3] = 4 and CNT [4] = 1. The minimum CNT-sum can be obtained
from CNT = [1,1,2,1,2,0,0,0] with a value of 23 and the maximum CNT-sum is obtained from
CNT = [1,1,2,1,1,1,0,0] with a value of 24. Since 23 ≤ S ≤ 24, it means we can set CNT [4] = 1
and A[3] = 4. We then try to set A[4] = 5 and CNT [5] = 1. The minimum and maximum
CNT-sum will then both become 24, obtained from CNT = [1,1,2,1,1,1,0,0]. Since 24 ≰ S, we
therefore have to have CNT [5] = 2. From this point on, the only valid CNT is [1,1,2,1,2,0,0,0].
We will try to set A[4] = 6 as the minimum possible value, which works since CNT [6] = 0. The
process continues setting A[5] = 3 as the smallest valid remaining value, A[6] = 7, A[7] = 5 and
lastly A[8] = 8. The minimum lexicographic permutation is therefore [1,2,4,6,7,5,8].

The final complexity is O(N). This can be obtained by updating the minimum and maximum
CNT-sum in O(1) at each step, using, for example, the formula of sum of consecutive numbers
a+ (a+ 1) + ...+ b = (a+b)∗(b−a+1)

2
There are a few last observations that are not required for the solution, but would ease

implementation:

• Assuming a solution exists (i.e. S is in the range determined by the minimum and
maximum CNT-sum before setting any CNT), then it is sufficient to check S only
against the minimum CNT-sum.
• When constructing A and CNT , we observe that the first values in A will have a CNT

value of 1, and then the remaining ones will have an alternating CNT value of 2 and 0.
• When constructing CNT , the last values will always be 0.

EDITORIAL JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 2 6

The described solution is a bit technical in order to show the correctness of the approach.
Alternative solutions exist, by generating the permutations of a fixed N and varied M and
observing similar patterns.

Problem: Wall

Proposed by: prof. Gheorghe Eugen Nodea

The problem asks for determining the best fragment for which Hmax · L− Sum = S, where
Hmax is the maximum height from the selected fragment, L is the width of the fragment (i.e. the
number of towers in the fragment) and Sum is the sum of the heights of the towers in the
fragment.

Subtask 1. We can set every fragment by selecting its left and right ends, then we can iterate
through the towers between these indices and compute the sum of their heights and their
maximum. This solution runs in O(N3) time complexity.

Subtask 2. For this subtask we need to slightly optimise the previous method. After we set the
left end of the fragment we can increasingly iterate over all possible right ends, and at each step
in order to update the sum and the maximum we only need constant time. Thus, this solution
runs in O(N2) complexity.

Subtask 3. We can optimise the previous solution further by doing a binary search on the right
end, after fixing the left one in place. Then for determining the sum on the fragment we can
use precomputed prefix sums, while for the maximum we can employ a Segment Tree. This
solutions runs in O(N log2N) time. Note that because of the design of the Segment Tree we
can perform binary search directly on its structure obtaining an O(N logN) time complexity.
Alternatively, we can replace the Segment Tree with a precomputed Range Maximum Query
table and obtain the same O(N logN) time complexity. These last approaches may score the
points from the last subtask as well, of course depending on implementation.

Subtask 4. For the last subtask we need to use the ”two pointers trick” in order to find the best
fragment. The first pointer will point to the left end of the fragment, while the second pointer
will point to the right end. Initially both pointers point to the first tower from the wall. If the
number of blocks needed to fix the current fragment is greater than the number of available
blocks (i.e. Hmax ·L− Sum > S) we move the first pointer one position to the right. Otherwise, if
the number of needed blocks is ≤ S we move the second pointer one position to the right, also
if the number of needed blocks is exactly S we have found a good fragment that needs to be
compared with previously found ones for optimality (considering the priority defined in the
task statement).

Maintaining the sum of the fragment towers is fairly easy (when increasing the left or the
right pointer we need to do a subtraction or an addition, respectively).

The final complexity is thus determined by the means of computing the maximum height
from the fragment:

• using a double-ended queue (deque): this structure is commonly used for maintaining
the maximum/minimum for a sliding window, it stores a subset of the heights from the
fragment sorted decreasingly; when a new height is added to the right (i.e. the second
pointer is moved) the heights at the end of the deque are removed as long as they are
smaller than the new one; when the left pointer is moved we need to make sure that
the height of the ”deleted” tower is removed from the deque, but it can only be on the
first position at the front of the deque so it would cost O(1) time to remove it; thus this
approach runs in O(N).
• using a max-heap or a STL set data structure: these structures allow us to perform

insertion, deletion and maximum query in at most O(logN) time, so we can maintain
such a structure to which we add a new height when the right pointer is moved, or

EDITORIAL JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 2 7

remove a height when the left pointer is moved; thus the time complexity for this
approach is O(N logN).
• using Range Maximum Query: precomputing the RMQ table costs O(N logN) time but

enables us to find in constant time the maximum from any segment; this solution runs
in O(N logN).

EDITORIAL JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 2 8

Scientific Committee

The problems were prepared by:
• Gheorghe-Eugen Nodea (chair) - “Tudor Vladimirescu” National College, Târgu Jiu
• Adrian Panaete - “A.T. Laurian” National College, Botos, ani
• Daniela Elena Lica - Centre of Excellence, Ploies, ti
• Ionel-Vasile Pit, -Rada - “Traian” National College, Drobeta Turnu Severin
• Zoltan Szabo - County School Inspectorate, Mures,
• Radu Voroneanu - Google
• Vlad Gavrilă - University of Cambridge
• Emanuela Cerchez - “Emil Racovit, ă” National College, Ias, i
• Marinel S, erban - “Emil Racovit, ă” National College, Ias, i
• Mihai Bunget - “Tudor Vladimirescu” National College, Târgu Jiu
• Tamio-Vesa Nakajima - Oxford, Computer Science department, UK
• Bogdan Iordache - University of Bucharest
• Cristian Frâncu - Clubul Nerdvana Bucures, ti
• Cosmin Pit, Rada - Bolt
• Ciprian-Daniel Ches, că - “Grigore C. Moisil” Technological High School, Buzău
• Marius Nicoli - “Frat, ii Buzes, ti“ National College, Craiova
• Dan Narcis Pracsiu - “Emil Racovit, ă” Theoretical High School, Vaslui
• Flavius Boian - “Spiru Haret” National College, Târgu Jiu
• Petru Simion Oprit, ă - Liceul Regina Maria Dorohoi
• Andrei-Costin Constantinescu - ETH Zurich

