Lottery

First AC: Mariusz Trela, Poland (24:13) \#AC = 15
problem author: Juliusz Straszyński

Lottery

Let's focus on one query.

Computing the distance naively is $\mathrm{O}(\mathrm{L})$.
There are $\mathrm{O}\left(\mathrm{n}^{2}\right)$ pairs of intervals.
So, the brute force is $\mathrm{O}\left(\mathrm{n}^{2} \times \mathrm{L}\right)=\mathrm{O}\left(\mathrm{n}^{3}\right)$.

Lottery

A A B A B A B C

distance $(1,3)=1$

Lottery

A A B A B A B C AABABABC

distance(1, 3) = 1

Lottery

A $\bar{A} B A B A B C$ A ABABABC

distance $(2,4)=0$

Lottery

A A B A B A B C AABABABC

distance $(3,5)=1$

Lottery

$O(n)$ for every shift.

$\mathrm{O}\left(\mathrm{n}^{2}\right)$ in total to find all the distances.
How to avoid the q factor in answering queries?
We can't store the $O\left(n^{2}\right)$ array!

Lottery

Queries: 2, 4, 7

$$
\begin{aligned}
& 0 \rightarrow 2 \\
& 1 \rightarrow 2 \\
& 2 \rightarrow 2 \\
& 3 \rightarrow 4 \\
& 4 \rightarrow 4 \\
& 5 \rightarrow 7 \\
& 6 \rightarrow 7 \\
& 7 \rightarrow 7
\end{aligned}
$$

Lottery

Time complexity: $O\left(n^{2}\right)$ Memory complexity: O(nq)

Cloud Computing

First AC: Costin-Andrei Oncescu, Romania (31:07) \#AC = 16
problem author: Karol Pokorski

Cloud Computing

Easiest possible version

$$
\begin{gathered}
F_{i}=1, f_{i}=1 \\
C_{i}=1, c_{i}=1 \\
n=1 \text { (one machine) }
\end{gathered}
$$

(consider the most profitable order)

Cloud Computing

Standard version

$$
\begin{gathered}
\mathrm{F}_{\mathrm{i}}=1, \mathrm{f}_{\mathrm{i}}=1 \\
\epsilon_{\mathrm{i}}=1, \mathrm{c}_{\mathrm{i}}=1 \\
\mathrm{n}=1 \text { (one machine) }
\end{gathered}
$$

$$
\mathrm{O}\left(\mathrm{~m} \times \mathrm{c}_{1}\right)
$$

dp [cores] - the largest profit to have so many cores

Cloud Computing

Double version

$$
\begin{gathered}
F_{i}=1, f_{i}=1 \\
\epsilon_{i}=1, c_{i}=1 \\
n=1 \text { (one machine) }
\end{gathered}
$$

two knapsacks
$\mathrm{O}(\mathrm{n} \times(\mathrm{n} \times \mathrm{C})+\mathrm{m} \times(\mathrm{m} \times \mathrm{C}))$

Cloud Computing

Double version

$$
\begin{gathered}
F_{i} \leq f_{i} \quad \leftarrow \text { works too } \\
\epsilon_{i}=1, c_{i}=1 \\
n=1 \text { (one machine) }
\end{gathered}
$$

two knapsacks
$\mathrm{O}(\mathrm{n} \times(\mathrm{n} \times \mathrm{C})+\mathrm{m} \times(\mathrm{m} \times \mathrm{C}))$

Cloud Computing

One knapsack with modified items, e.g.:

- a task with weight 5 and value 20
- a machine with weight -7 and value -15

We must end with total weight 0 or smaller.

$$
\mathrm{O}((\mathrm{n}+\mathrm{m}) \times(\mathrm{n} \times \mathrm{C}))
$$

Cloud Computing

Sort by f_{i}, F_{i} decreasingly.

Then just guarantee that the total weight is 0 or smaller at every moment of time.

$$
\mathrm{O}((\mathrm{n}+\mathrm{m}) \times(\mathrm{n} \times \mathrm{C}))
$$

Cloud Computing

The alternative knapsack

$$
\begin{gathered}
\mathrm{V}_{\mathrm{i}}=1, \mathrm{v}_{\mathrm{i}}=1 \\
\mathrm{dp}[\text { cores }] \rightarrow \mathrm{dp}[\text { money }]
\end{gathered}
$$

$$
\mathrm{O}((\mathrm{n}+\mathrm{m}) \times \mathrm{n})
$$

Global Warming

First AC: Kacper Kluk, Poland (26:04) \#AC $=27$
problem author: Kamil Dębowski

Global Warming

$$
\begin{aligned}
& 0,3, \frac{+3}{1,5,2,4,6}, 0,7 \rightarrow \mathbf{0}, \mathbf{3}, \overline{4,8,5,7,9}, 0,7 \\
& 0,3, \overline{1,5,2,4,6,0,7} \rightarrow \mathbf{0}, \mathbf{3}, \overline{\mathbf{4}, 8, \mathbf{5}, \mathbf{7}, \mathbf{9}, 0, \mathbf{1 0}}
\end{aligned}
$$

suffix can only improve the answer!

Global Warming

$$
\begin{aligned}
& 1, \frac{-2}{5,7}, 6,9 \rightarrow 1, \overline{3,5}, 6,9 \\
& \frac{-2}{1,5,7}, 6,9 \rightarrow-\overline{-1,3,5}, 6,9 \\
& 1,5,7, \frac{+2}{6,9} \rightarrow 1,5,7, \overline{8,11}
\end{aligned}
$$

It's enough to consider suffixes!

$$
d=x
$$

Global Warming

Modifying the standard LIS algorithm.

$$
30,60,10, \mid 50, \ldots
$$

1-10
2-60

Global Warming

Modifying the standard LIS algorithm.

$$
30,60,10,50, \mid \ldots
$$

$$
\begin{gathered}
1-10 \\
2-6050
\end{gathered}
$$

Global Warming

The LDS from the right.
$\ldots, 5 \longleftarrow, 45,45,75,80$

$$
\begin{aligned}
& 1-45 \\
& 2-50 \\
& 3-50
\end{aligned}
$$

Global Warming

The LDS from the right.

$30,60,10, \mid 50,45,75,80$

$$
\begin{aligned}
& 1-10 \\
& 2-60
\end{aligned}
$$

Global Warming

The LDS from the right.

$30,60,10, \mid 5(45,75,80$
$1-10 \leftarrow$ longest ending with
$2-60$ a number 49 or smaller

Global Warming

The LDS from the right.
$30,60,10, \mid 50,45,75,80$

$$
\begin{aligned}
& 1-10 \\
& 2-60
\end{aligned} \text { ok if } x \geq 11
$$

Global Warming

When first going from left, just before " 50 " remember the length of LIS ending with a number $50+x-1$ or smaller.

$$
\begin{aligned}
& 1-10 \\
& 2-60
\end{aligned}
$$

Thank you for your attention. Good luck on Thursday!

Toys

First 100: Dawid Jamka, Poland (14:31) \#AC $=26$
problem author: Karol Pokorski

Triangles

First 100: Mariusz Trela, Poland (58:17) \#AC $=18$
problem author: Kamil Dębowski

Fibonacci

Max score: 65
First 65: Costin-Andrei Oncescu, Romania (2:19:09) \#65 = 2
problem authors: Dominik Klemba, Kamil Dębowski

Fibonacci

$0100101=F_{2}+F_{5}+F_{7}=2+8+21=31$

1) Let's find $X\left(F_{a[1]}\right)$

0000001
0000110
0011010
1101010
$X\left(F_{a[1]}\right)=(a[1]-1) / 2$

Fibonacci

2) Let's find $X\left(F_{a[1]}+F_{a[2]}\right)$

00000001000001 00000001000110
00000001011010 00000002101010
00000111101010
00011011101010
$\mathrm{X}\left(\mathrm{F}_{\mathrm{a}[1]}+\mathrm{F}_{\mathrm{a}[2]}\right) \approx\left(\mathrm{a}_{1} / 2\right) \cdot\left(\left(\mathrm{a}_{2}-\mathrm{a}_{1}\right) / 2\right)$

Fibonacci

3) General case, values a_{i} far away from each other.
$X \approx\left(a_{1} / 2\right) \cdot\left(\left(a_{2}-a_{1}\right) / 2\right) \cdot\left(\left(a_{3}-a_{2}\right) / 2\right) \cdot \ldots$
$X \approx\left(d_{1} / 2\right) \cdot\left(d_{2} / 2\right) \cdot\left(d_{3} / 2\right) \cdot\left(d_{4} / 2\right) \cdot \ldots$
$\left(d_{i}\right.$ are distances between sorted $\left.a_{i}\right)$

Fibonacci

The $O\left(n^{2}\right)$ solution, $\left|a_{i}-a_{j}\right| \geq 2$

For every prefix, sort values $a_{1}, a_{2}, \ldots, a_{k}$, and run $\mathrm{O}(\mathrm{k})$ dynamic programming dp[2].
...00010001...
...00010110...
$\ldots 00021010 \ldots \leftarrow \mathrm{dp}[0]$ is the number of ways to choose values on the right so that the next 1 on the left must be changed to smaller 1's (pushed further to the left)
$d p[1]$ means: we can leave the next 1 unchanged

Fibonacci

...00010001...
...00010110...
$\ldots 00021010 \ldots \leftarrow \mathrm{dp}[0]$ is the number of ways to choose values on the right so that the next 1 on the left must be changed to smaller 1's (pushed further to the left)
dp[1] means: we can leave the next 1 unchanged
$d p '[0]=d p[0]+d p[1] \quad$ (if distance is even, else 0)
$d p^{\prime}[1]=(d p[0]+d p[1]) \cdot($ distance -1$) / 2+d p[1]$

Fibonacci

What if $\mathrm{a}_{\mathrm{j}}=\mathrm{a}_{\mathrm{i}}+1$?
...001100...
...000010...
Possible chain effect, amortized $O(n)$ in total
...00010101010...
...00110101010...
...00001101010...
...00000011010...

Fibonacci

" a_{i} are different squares of natural numbers"
" a_{i} are different even numbers"
No collisions.
Then we already have an $\mathrm{O}\left(\mathrm{n}^{2}\right)$ solution.

Fibonacci

What if $a_{j}=a_{i}$?
...000200...
$\ldots 010010 \ldots$ because $2 \cdot F_{k}=F_{k+1}+F_{k-2}$
Doesn't amortize :(

Fibonacci

What if $a_{j}=a_{i}$?
Doesn't amortize :(
...000101010100...
... $000101010200 . .$.
...000101020110...
...000102011110...
...000201111110...
...010111111110...
...010001010101...

Fibonacci

$\mathrm{O}\left(\mathrm{n}^{2}\right)$ solution: resolve conflicts in any way in recompute the answer in $O(n)$ each time

Let's try to avoid recomputing the answer.

Fibonacci

Let's try to avoid recomputing the answer.

- a segment tree (either off-line or BST)
- matrix $2 x 2$ or $3 x 3$ in every node
- O(log(n)) per change

Fibonacci

Last steps.
way I - distances between consecutive 1's
way II - maximal intervals of type 1010101

Thank you for your attention.

Good luck on IOI!

