
Diversity – solution

Adrian Beker

September 2, 2021

1 The solution in the case of a single query
To begin with, let’s consider the case Q = 1, i.e. the case of a single query. We will first determine
how to efficiently compute the total diversity of a given sequence, which will be denoted by S.
If we denote by K the diversity of the sequence, we may without loss of generality assume that
the sequence consists of the numbers 1, 2, . . . ,K (by performing coordinate compression). A gap
of a value i ∈ {1, 2, . . . ,K} is a maximal (with respect to inclusion) contiguous subsequence not
containing i. Let i have ri gaps and let `i,1, . . . , `i,ri be their lengths, in the order from left to right.
Then it is easy to see that i occurs on a total of

N(N + 1)

2
−

ri∑
j=1

`i,j(`i,j + 1)

2

contiguous subsequences. Indeed, each contiguous subsequence not containing i is contained in a
unique gap. Hence, we have (using linearity of expectation)

S =

K∑
i=1

N(N + 1)

2
−

ri∑
j=1

`i,j(`i,j + 1)

2

 .

Now note that
∑ri
j=1 `i,j = N − ci, where ci is the number of occurrences of the value i in the

sequence, so we have

K∑
i=1

ri∑
j=1

`i,j =

K∑
i=1

(N − ci) = KN −
K∑
i=1

ci = KN −N = N(K − 1).

Hence, the above expression for S can be simplified as follows:

S =
1

2

KN(N + 1)−N(K − 1)−
K∑
i=1

ri∑
j=1

`2i,j

 .

We conclude that the problem reduces to the following: permute a given sequence so that the sum of
the squares of the lengths of all gaps, call it T , is as large as possible. In order to solve this problem,
we make the following observation:
Claim 1. In every optimal solution, the occurrences of each value i ∈ {1, 2, . . . ,K} form a contiguous
subsequence.
Proof. We say that a value i ∈ {1, 2, . . . ,K} is good if its occurrences form a contiguous subsequence.
We will show that if there exists i ∈ {1, 2, . . . ,K} which is not good, then we can permute the
sequence in such a way that T and the number of good values both increase. To this end, pick
some value i which is not good and consider two adjacent blocks formed by its occurrences in the
sequence. For each value j 6= i, let uj , vj ∈ {1, 2, . . . , rj} be the indices of the gaps of the value j

1

containing the left and the right block respectively. Let the lengths of the left and the right block
be a and b respectively. On moving the left block immediately next to the right block, T changes by

∆1 =
∑

j 6=i, aj 6=bj

[(`j,uj − a)2 + (`j,vj + a)2 − `2j,uj
− `2j,vj] > 2a

∑
j 6=i, aj 6=bj

(`j,vj − `j,uj).

Similarly, on moving the right block immediately next to the left block, T changes by

∆2 =
∑

j 6=i, aj 6=bj

[(`j,uj
+ b)2 + (`j,vj − b)2 − `2j,uj

− `2j,vj] > 2b
∑

j 6=i, aj 6=bj

(`j,uj
− `j,vj).

Note that the above strict inequalities hold because there exists at least one value j 6= i such
that aj 6= bj , e.g. a value that occurs between the two blocks in consideration. Hence, at least
one of the differences ∆1, ∆2 is strictly positive, so we can certainly perform one of the described
transformations so that T increases. Moreover, it is clear that the number of good values increases
because the value i becomes good, but no other value ceases to be good. This concludes the proof.

By Claim 1, the problem reduces to the following: find a permutation π of the set {1, 2, . . . ,K}
which maximizes the function

f(π) =

K∑
i=1

i−1∑
j=1

cπ(j)

2

+

 K∑
j=i+1

cπ(j)

2
 .

In other words, we have to permute the sequence c1, . . . , cK so that the sum of the squares of the
sums of all proper prefixes and suffixes is as large as possible. We can solve this problem naively in
time O(K ·K!), or using dynamic programming with bitmasks in time O(K · 2K). However, for a
solution with polynomial complexity, it is necessary to make the following observation:
Claim 2. In every optimal solution, the values in the sequence first increase and then decrease. More
precisely, if π is an optimal permutation, then there exists i ∈ {1, 2, . . . ,K} such that cπ(j) ≤ cπ(j+1)

for all 1 ≤ j < i and cπ(j) ≥ cπ(j+1) for all i ≤ j < K.
Proof. Fix and index j ∈ {1, 2, . . . ,K − 1} and let π′ be the permutation obtained by swapping the
elements at positions j, j+ 1 in π, i.e. formally π′ = π ◦ τ , where τ is the transposition which swaps
j, j + 1. Then we have

f(π′)− f(π) = (Lj + cπ(j+1))
2 + (Rj+1 + cπ(j))

2 − (Lj + cπ(j))
2 − (Rj+1 + cπ(j+1))

2

= 2(Lj −Rj+1)(cπ(j+1) − cπ(j)),

where we define Lk =
∑k−1
l=1 cπ(l), Rk =

∑K
l=k+1 cπ(l) for 1 ≤ k ≤ K. Thus, if π is optimal, it follows

that Lj − Rj+1 and cπ(j+1) − cπ(j) have opposite sign, from which the desired conclusion follows.

It follows from Claim 2 that an optimal solution can be built as follows: we iterate over the
values c1, . . . , cK in increasing order and we maintain two sequences, a left one and a right one. In
each step, we put the current value either at the end of the left sequence or at the beginning of the
right sequence. In the end, we obtain the sought permutation by concatenating the left and the
right sequence. It is now not hard to devise a solution via dynamic programming which runs in time
O(K ·N), where N =

∑K
i=1 ci. The state is the current position in the sorted sequence c1, . . . , cK

and the sum of the left sequence, while the transition consists of choosing where to put the current
value.

It turns out that an even stronger assertion holds (strictly speaking, it is stronger than the
assertion obtained from Claim 2 on replacing the universal quantifier by an existential one):
Claim 3. If we (without loss of generality) assume that c1 ≤ . . . ≤ cK , then the permutation π0
given by

π0(i) =

{
2i− 1 if 1 ≤ i ≤

⌈
K
2

⌉
2(K − i+ 1) if

⌈
K
2

⌉
< i ≤ K

2

is optimal. In other words, it is optimal to first arrange all elements with odd indices in increasing
order and then all elements with even indices in decreasing order.
Proof. Let π be any permutation; we will show that f(π0) ≥ f(π). To begin with, we introduce the
map

s : SK → N2(K−1)

with the property that for all σ ∈ SK we have s(σ)1 ≥ . . . ≥ s(σ)2(K−1) and the multiset {s(σ)i |
1 ≤ i ≤ 2(K−1)} is equal to the multiset consisting of the sums of all proper prefixes and suffixes of
the sequence cσ(1), . . . , cσ(K) (here SK denotes the set of all permutations of the set {1, 2, . . . ,K}).
We have to show that

2(K−1)∑
i=1

ϕ(s(π0)i) ≥
2(K−1)∑
i=1

ϕ(s(π)i),

where
ϕ : R→ R, x 7→ x2

is a convex function. To this end we will use Karamata’s inequality. It suffices to show that for all
1 ≤ i ≤ 2(K − 1) we have

i∑
j=1

s(π0)j ≥
i∑

j=1

s(π)j (†)

and that equality holds for i = 2(K− 1). The latter claim is obvious because for all σ ∈ SK we have

2(K−1)∑
j=1

s(σ)j =

K−1∑
i=1

 i∑
j=1

cσ(j) +

K∑
j=i+1

cσ(j)

 = N(K − 1).

To prove (†), observe that it is enough to show that for all K ≤ i ≤ 2(K − 1) we have

2(K−1)∑
j=i

s(π0)j ≤
2(K−1)∑
j=i

s(π)j . (?)

Indeed, then the inequality (†) readily follows in the case K − 1 ≤ i < 2(K − 1) by subtracting
the inequality (?) with i + 1 in place of i from the inequality (†) with 2(K − 1) in place of i. On
the other hand, in the case 1 ≤ i ≤ K − 1, the inequality (†) follows from the inequality (?) with
2K − i− 1 in place of i because the i prefixes/suffixes with smallest sums are complementary to the
i prefixes/suffixes with the largest sums.

Hence, it remains to prove the inequality (?). It is enough to show that for all 1 ≤ i ≤ K − 1
and 0 ≤ j ≤ i, the following inequality holds

d i
2 e∑

k=1

k∑
l=1

cπ0(l) +

b i
2 c∑

k=1

k∑
l=1

cπ0(K−l+1) ≤
j∑

k=1

k∑
l=1

cπ(l) +

i−j∑
k=1

k∑
l=1

cπ(K−l+1).

After grouping the same terms together, we see that this inequality is equivalent to∑d i
2 e
k=1

(⌈
i
2

⌉
− k + 1

)
cπ0(k) +

∑b i
2 c
k=1

(⌊
i
2

⌋
− k + 1

)
cπ0(K−k+1) ≤

∑j
k=1(j − k + 1)cπ(k) +

∑i−j
k=1(i− j − k + 1)cπ(K−k+1).

This inequality we can prove as follows. First, we replace the coefficients j − k + 1 for 1 ≤ k ≤ j
and i − j − k + 1 for 1 ≤ k ≤ i − j in the expression on the right-hand side with the coefficients⌈
i
2

⌉
− k + 1 for 1 ≤ k ≤

⌈
i
2

⌉
and

⌊
i
2

⌋
− k + 1 for 1 ≤ k ≤

⌊
i
2

⌋
, in such a way that their relative

ordering remains unchanged. Second, we permute the elements cπ(k) for 1 ≤ k ≤ j and cπ(K−k+1)

for 1 ≤ k ≤ i− j so that their respective coefficients are oppositely sorted. Third, for all 1 ≤ j ≤ i
we replace the j-th smallest element among the mentioned elements with cj . This transforms
the expression on the left-hand side into the one on the right-hand side, in such a way that its
value never increases during the process. Indeed, in the first step, the coefficient of each element

3

doesn’t increase (easy check – this boils down to the fact that the sorted version of the multiset
{j − k + 1 | 1 ≤ k ≤ j} ∪ {i− j − k + 1 | 1 ≤ k ≤ i− j} for j = d i2e pointwise dominates the sorted
version of the same multiset for any other value of j). In the second step, the claim is immediate
from the rearrangement inequality, whereas in the third step, the claim is obvious. This concludes
the proof.

Finally, the problem can be solved by sorting the sequence c1, . . . , cK and evaluating the function
f on the permutation π0 from Claim 3, in time O(K logK) (after the initial step of determining the
sequence c1, . . . , cK , which takes O(N logN) time).

2 The solution in the case of many queries
Once we have established the solution of the problem in the case Q = 1, we may move on to the
version with more than one query. The main idea is to use the so-called Mo’s algorithm, which is
nothing else but a way of ordering the queries which yields a small sum of sizes of the symmetric
differences of intervals in neighbouring queries. More concretely, if we denote the intervals by (li, ri)
(0-based) for 1 ≤ i ≤ Q, then we sort the queries according to the lexicographic ordering of the
respective pairs (b liB c, ri), where we set B = b

√
Nc. In other words, we split the sequence into

dNB e blocks of size B, and we split the queries into groups depending on the block to which the left
endpoint of the interval belongs. In each group, we sort the queries in increasing order according
to the right endpoint of the interval. It is easy to see that the aforementioned sum of sizes of the
symmetric differences of intervals doesn’t exceed O((Q+N)

√
N).

How does this observation help us to solve the problem? If we process the queries in the described
order, then for all 0 ≤ i ≤ N − 1 we can maintain a counter freq[i] which denotes the number of
occurrences of the value i in the current interval (under the assumption that we have previously
performed coordinate compression on the whole sequence). When moving on to the next query, we
can refresh the counters by simply iterating over the symmetric difference of the current interval
and the next one.

It is clear that the sequence c1, . . . , cK from Section 1 consists precisely of the non-zero elements
of the array freq. However, there can be many such elements, so we have to keep track of the
array freq by storing it in a compressed form. This can be done by storing for each 1 ≤ i ≤ N a
counter comp[i] which denotes the number of occurrences of the value i in the array freq. We are
now interested in the non-zero elements of the array comp. How many such elements can there be?
Observe that the sum of comp[i]·i over all 1 ≤ i ≤ N equals the sum of freq[i] over all 0 ≤ i ≤ N−1,
which is at most N . Thus, if the array comp has L non-zero elements, then the sum of their indices
is at the same time at least 1 + 2 + . . .+L = L(L+1)

2 and at most N . Therefore, we have L ≤
√

2N ,
so comp has at most O(

√
N) non-zero elements.

It remains only to efficiently evaluate the function f on the permutation π0, for the sequence
c1, . . . , cK given in the described compressed form. This can be done in time O(L) by performing
a summation which involves the sum of squares of the elements of an arithmetic progression, on
the condition that we can efficiently obtain the non-zero elements of the array comp in the order in
which they appear in the array. This can be achieved by either storing the array comp in a map, or
by storing the indices of the non-zero elements in a separate vector, which is then sorted as needed.
This approach has time complexity O((Q+N)

√
N logN). For the purposes of sorting, we can also

use radix sort in order to recover the complexity O((Q+N)
√
N). Even though the latter approach

is faster in theory, it is the former approach that gives better results in practice. For more details
concerning implementation, please consult the attached source code of the official solution.

3 Appendix: Inequalities used in the proofs
In the proof of Claim 3, we made use of the following (more or less standard) results:
Theorem 1. (Karamata’s inequality) Let f : R→ R be a convex function, that is to say, such that

4

for all x, y ∈ R, t ∈ [0, 1] the following inequality holds

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).

Let x1, . . . , xn and y1, . . . , yn be real numbers such that x1 ≥ . . . ≥ xn, y1 ≥ . . . ≥ yn and for all
1 ≤ i ≤ n we have

i∑
j=1

xj ≥
i∑

j=1

yj ,

with equality in the case i = n. Then the following inequality holds

n∑
i=1

f(xi) ≥
n∑
i=1

f(yi).

Proof in the case f(x) = x2. Let pi =
∑i
j=1 xj , qi =

∑i
j=1 yj for 0 ≤ i ≤ n. Then we have

p0 = q0 = 0, pn = qn and pi ≥ qi for all 0 ≤ i ≤ n. Using summation by parts, we obtain that

n∑
i=1

f(xi)−
n∑
i=1

f(yi) =

n∑
i=1

(xi − yi)(xi + yi)

=

n∑
i=1

[(pi − pi−1)− (qi − qi−1)](xi + yi)

=

n∑
i=1

[(pi − qi)− (pi−1 − qi−1)](xi + yi)

=

n∑
i=1

(pi − qi)(xi + yi)−
n−1∑
i=0

(pi − qi)(xi+1 + yi+1)

=

n−1∑
i=1

(pi − qi)(xi + yi)−
n−1∑
i=1

(pi − qi)(xi+1 + yi+1)

=

n−1∑
i=1

(pi − qi)[(xi − xi+1) + (yi − yi+1)] ≥ 0,

where the last inequality holds because pi − qi, xi − xi+1, yi − yi+1 ≥ 0 for 1 ≤ i ≤ n− 1.
Theorem 2. (Rearrangement inequality) Let x1, . . . , xn te y1, . . . , yn be real numbers such that
x1 ≤ . . . ≤ xn, y1 ≤ . . . ≤ yn. Then for all permutations σ of the set {1, 2, . . . , n} the following
inequalities hold

n∑
i=1

xiyn−i+1 ≤
n∑
i=1

xiyσ(i) ≤
n∑
i=1

xiyi.

Proof. Note that the first inequality follows by applying the second inequality to the sequence
−yn, . . . ,−y1 in place of y1, . . . , yn. Hence, it suffices to prove the second inequality. Choose a
permutation σ which maximizes the value of the sum

∑n
i=1 xiyσ(i). If there is more than one such

permutation, choose the lexicographically smallest one. We claim that σ is the identity permutation,
i.e. that we have σ(i) = i for all 1 ≤ i ≤ n. Indeed, if this is not the case, then there exists
i ∈ {1, 2, . . . , n− 1} such that σ(i) > σ(i+ 1). Then let σ′ = σ ◦ τ , where τ is the transposition that
swaps i, i+ 1. Then we have

n∑
i=1

xiyσ′(i)−
n∑
i=1

xiyσ(i) = xiyσ(i+1)+xi+1yσ(i)−xiyσ(i)−xi+1yσ(i+1) = (xi+1−xi)(yσ(i)−yσ(i+1)) ≥ 0.

Furthermore, σ′ is lexicographically smaller than σ, which is a contradiction.

5

L-Triominoes – solution

Domagoj Bradač

September 2nd, 2021

1 An O(2W ·HW) solution using dynamic programming

We describe a dynamic programming solution which is standard for problems of this type. We build the

tiling from the bottom up and from left to right as follows. Suppose 1 ≤ r ≤ H, 1 ≤ c ≤ W and we have

so far tiled every square (r′, c′) with (r′, c′) ≤ (r, c) (and potentially some other squares in the process). In

the next step, we put a triomino covering the current square (r, c). Note that there are at most four possible

ways to do this (see Figure 1)

What do we need to keep track of? By assumption, we have already tiled all squares (r′, c′) < (r, c). It is

easy to check that the only other squares we might have additionally tiled are the following:

• (r, c′) with c′ ≥ c;

• (r + 1, c′) with c′ ≤ c.

(See Figure 2.)

In total, there are W + 1 squares which might additionally be tiled. Hence, we can describe the state of

our dynamic program as (r, c,m), where (r, c) is the position of the current square and m is a bitmask of

W + 1 bits describing which additional squares are tiled. As mentioned, the DP transition can be done in

time O(1), yielding the total running time O(2W ·HW).

2 The directed graph on bitmasks

To discuss the remaining solutions, we introduce a directed graph D. Its vertex set consists of all 2W bit-

vectors of length W. Such a vector represents a partially tiled row: 1’s correspond to occupied squares and

0’s to squares which need to be tiled. For two bit-vectors (u, v), the edge u → v appears in D if we can

complete the tiling of the row partially tiled according to bitmasks u such that the next row has partial tiling

Figure 1: Four possible ways to continue tiling. Gray squares mark the previously tiled squares and the dot
marks the current square (r, c).

1

Figure 2: Squares we need to keep track of in a DP solution

Figure 3: There are two ways to continue tiling from the bitmask 101.

corresponding to bitmask v. E.g., suppose W = 3 and u = 101. There are two ways to finish the tiling of this

row (Figure 3). Hence, there are two edges going from 101: (101, 110) and (101, 011).

Note that we can construct the entire digraph D in time O(22W ·W) using the abovementioned dynamic

programming approach.

How can we use this digraph to obtain a faster solution? Let 1 ≤ r ≤ H be an arbitrary row. Suppose we

can tile, bottom-up as before, the first r − 1 rows, possibly tiling some additional squares in row r. Let S

be the set of squares in row r which are either tiled or initially missing and let vS denote the vertex in D

corresponding to S. We say this tiling produces the set S in row r. Define

Ur =

{
vS ∈ V (D) | there is a tiling which produces S in row r

}
.

Now let vS ∈ Ur and consider a tiling of the first r−1 rows which produces S in row r. Let T be an arbitrary

subset of squares in row r + 1 and let vT its corresponding vertex in D. Let us for the moment ignore any

squares missing in row r + 1. Then, by definition of D, we can extend our tiling such that the set of tiled

squares in row r + 1 is T if and only if (vS , vT) is an edge in D. Consider a set T we can achieve this way. If

it contains any of the squares missing in row r + 1 then this tiling is invalid. Otherwise, we add the missing

squares to T, and add T to the set Ur+1 of possible configurations in the next row.

A näıve implementation of the above yields an algorithm with running time O(22W ·H +K), worse than the

dynamic programming approach.

However, this approach can be vastly improved. Let us first identify the simpler problem we want to attack.

Suppose 1 ≤ r < s ≤ H and there are no tiles between rows r and s, inclusively. Given Ur, we need to

be able to quickly determine Us. In the setting of our directed graph D, it is enough to solve the following

subproblem O(k) times.

Problem 2.1. Given a set U ⊆ V (D) and a positive integer `, determine all vertices v ∈ V (D) for which

there exists a vertex u ∈ U and a walk of length ` from v to u.

3 Matrix multiplication – O(23W ·K logH)

The first way to solve this problem uses a standard technique of matrix multiplication. It can be implemented

to run in time O(23W ·K logH). Using bitwise operations one can achieve a very small constant factor (at

most 1/64 on modern architectures) compared to the usual implementation. Additionally, this approach

2

can be sped up to achieve running time O(23W · logH + 22W ·K logH), which is left as an exercise to the

reader. However, we decided not to award these speedups any additional points as they represent technical

improvements to the solution which do not introduces any of the ideas required to solve the problem fully.

4 The full solution – O(2W ·WK · C(W)).

The function C(W) is a parameter which we will introduce formally later. To motivate our solution, we start

with a definition.

Definition 4.1. The period of a directed graph is the greatest common divisor of the lengths of all (directed)

cycles in the graph.

We immediately state a useful fact which in some form can be found in most textbooks about Markov chains

(e.g. see [?]).

Fact 4.2. Let F = (V,E) be a strongly connected directed graph with period k. Then, V can be partitioned as

V = V1

·
∪V1

·
∪ . . .

·
∪Vk such that for any 1 ≤ i ≤ k, the vertices in Vi only have outgoing edges towards Vi+1,

where we denote Vk+1 = V1. Additionally, there exists a constant C = C(F), such that the following holds.

Let 1 ≤ i, j ≤ k, and let u ∈ Vi, v ∈ Vj be arbitrary vertices. Then for any integer ` ≥ C, there is a walk from

u to v of length ` if and only if j − i ≡ `(mod k).

From now on suppose that D is strongly connected. This is actually not true and we will later describe the

structure of D. However, solving the problem under the assumption that D is strongly connected captures

the relevant ideas. Suppose we are given the period k of D as well as a partition V (D) = V1

·
∪V1

·
∪ . . .

·
∪Vk

and the integer C from Fact 4.2. Then for given U and ` we can answer Problem 2.1 as follows. If ` ≥ C,

find the set I of indices 1 ≤ i ≤ k, such that U ∩ Vi 6= ∅. For each Vi, i ∈ I, add the set V(i+`)mod k to the

answer. This can be done in time O(|D|) = O(2W). If ` < C, we can answer Problem 2.1 using dynammic

programming in time O(2W · `W) as described in Section 1. Combining the two and recalling that we need

to solve O(K) instances of Problem 2.1, we derive an algorithm with time complexity O
(
2W ·WK ·C(W)

)
,

where C = C(W) is the mentioned constant.

Finally, we describe the describe the structure of D. The cases W = 2, 3 have a different structure than larger

values and these cases need to be handled separately. We leave this as a simple exercise for the reader. (Or

see the attached source codes.) For W ≥ 4:

a) If W is odd, there are two special vertices, those corresponding to masks 1010 . . . 101 and 0101 . . . 010.

The former has no incoming edges (it is impossible to achieve this configuration by tiling the previous

row) while the latter has no outgoing edges (it is impossible to continue the corresponding tiling). From

now on we ignore these vertices and all of the following statements come with the exception of special

vertices.

b) If W is not divisible by 3, then there is a single weakly connected component, it is also strongly

connected, and has period 3. If W is divisible by 3, then there are three connected components V0, V1, V2,

all are strongly connected and have period 1. The partition from Fact 4.2 in the former case, and the

connected components in the latter, correspond to residues modulo 3 of the number of 1’s in the

corresponding bitmasks.

c) For every non-trivial strongly connected component D′ of D, we have C(D′) ≤ 11. :-)

3

All of these statements can be verified with a piece of code which runs for a few minutes or less. In addition,

the first point can easily be found with pen and paper. The second point can be guessed by considering

residues modulo 3. The third point is difficult to guess precisely and is the most difficult to verify. That

being said, obtaining (or guessing) a reasonably good upper bound on C is enough to obtain full points.

Having determined the structure of D, we can hard-code it into our program and we do not need to explicitly

generate the digraph D.

5 Subtasks

The following presents the subtasks for this problem and their intended solutions.

Subtask Score Constraint Intended solution

1 10 H ≤ 1000 Dynamic programming

2 7 K = 0 Pen and paper analysis

3 11 W ≤ 3 This subtask can be solved using matrix multiplication.

However, it can also be solved by doing a pen and paper

analysis of the directed graph D. Such a solution of the

subtask can lead to a full solution.

4 17 4 ≤W ≤ 6 Matrix multiplication

5 35 7 ≤W ≤ 13 Full solution

6 20 No special constraints Full solution, correct handling of the special cases W = 2, 3.

4

Newspapers – solution

Ivan Paljak

September 5, 2021

1 Branko survives if there is a cycle

The easiest observation in this problem is that the input graph at least has to be a tree in order for Ankica

to have a successful strategy.

To prove this, we can generalize the explanation of the second example. More precisely, if we assume the

graph contains a cycle, we can imagine Branko starting at any node of the cycle that is different from a1.

Since each node in the cycle has two neighbours that are also part of the cycle, Branko can choose a node in

the i-th turn that’s different from ai.

2 A brute force approach

Notice that Ankica only needs to keep track of the set of nodes Branko can occupy before each turn. Of

course, before the game, she assumes that Branko can occupy any node.

This leads us to represent the game as a graph where each node corresponds to a set of nodes that Branko

can occupy at some turn. The graph will be directed, and the edge from node u to node v will mean that

Ankica can make a guess such that if Branko could be located at a set of nodes represented by u before a

turn, he could be located at a set of nodes represented by v after the turn.

Obviously, we want to find the shortest path from a node representing the set of all nodes to a node repre-

senting an empty set.

This approach was fast enough to solve the first subtask.

3 Branko doesn’t survive on a chain

Now let’s show that Ankica can always catch Branko on a chain.

Suppose node labeling is consistent with the second subtask, and let’s color the nodes with even labels white,

and nodes with odd labels black.

The cases when N = 1 and N = 2 can be trivially solved, we assume N ≥ 3 in the rest of the section.

Ankica will make a total of 2N − 4 guesses: (2, 3, . . . , N − 1, N − 1, N − 2, . . . , 2). It is easy to show that

she will catch Branko during the first N − 2 turns if he starts on a white node, and that she will catch him

during the last N − 2 turns if he starts on a black node.

Suppose Branko starts on a white node. In that case, during the first N − 2 turns, Ankica and Branko will

occupy a node of the same color. It’s easy to see that in order for Branko to survive the i-th turn, it must

1

be true that bi > ai. This is because b1 > a1 (otherwise he is caught in the first turn), and in order for bi
to be less than ai, we would have to have some bj = aj + 1 (j < i), which is not possible because bj and aj
must be of the same parity. Since aN−2 = N − 1, there is no node of the same color with greater label, and

we can conclude that Branko will be caught during the first N − 2 turns if he starts on a white node.

If Branko starts on a black node, he will occupy a node of different color than Ankica during the first N − 2

turns. Since the (N − 1)-st turn repeats the node, Branko will occupy the same colored node during the last

N − 2 turns. Thus, the last N − 2 turns when Branko starts on a black node are analogous to the first N − 2

turns when he starts on a white node, just in the opposite direction.

We will later show that this construction is indeed optimal.

A commonly submitted suboptimal solution for a chain with similar reasoning was (1, 2, . . . , N,N, . . . , 1).

4 Branko survives on a star with three arms of length three (S ′)

Here we will show that Ankica cannot catch Branko on a specific star-shaped tree with 10 nodes. We will

label the central node with label 10, the three arms with labels (1, 2, 3), (4, 5, 6), and (7, 8, 9) as depicted

below.

Figure 1: Star with three arms of length three

We will show that Branko can survive by spending his even turns either at the central node (10), or at the

middle arm nodes (2, 4, 8). Loosely speaking, Branko will attempt to stay as close to the central node as

possible during the entire game.

Therefore, if Branko finds himself next to the central node, i.e. in one of nodes (1, 4, 7), he will move to a

central node in the next turn unless Ankica makes that guess. In that case, he will move to a middle arm

node, i.e. one of (2, 4, 8).

If Branko finds himself on a middle arm node during a turn, he will move towards node 10, i.e. to one of the

nodes (1, 4, 7), unless that is Ankica’s next guess. In that case, he is forced on of the leafs (3, 6, 9).

Obviously, if Branko finds himself at nodes (3, 6, 9), he will be forced to move to nodes (2, 4, 8) respectively.

The key idea is that if Branko finds himself in the central node, he will move to a branch which Ankica will

not guess in the next turn, or the next branch in which Ankica wlil guess two closest nodes to the central in

succession, i.e. (1, 2), (4, 5), or (7, 8).

2

Notice that we only need to show that Branko will never be at a leaf node when Ankica guesses its neighbour

on the next turn. In order for Branko to visit a leaf node, that means that Ankica must guess the node of the

same arm next to the central one in that turn. If Ankica catches Branko on the next turn, that would imply

her guessing two successive nodes from the previous section. For that to be possible, she would have to have

guessed such consecutive nodes of some other arm after his last visit to node 10. This is in contradiction

with the rules because during her guesses, he would have returned to the central node.

5 Branko doesn’t survive on a tree that doesn’t contain S ′

In general, it should be easy to conclude that if Branko can’t survive on a graph G, he also can’t survive

on a graph H with an induced subgraph isomorphic to G. In other words, Branko will escape in any tree

containing S′.

Interestingly enough, it turns out that Ankica can always catch Branko on a tree that doesn’t contain S′.

We can show that by employing a similar strategy to the one explained in a section that deals with a chain.

Let’s observe the longest path (diameter) of a tree, and assume it’s nodes are labeled 1, 2, . . . , l, where l

is the length of the diameter. We will also generalize the coloring from the chain analysis. A node will be

colored white if his distance from node 1 is even, otherwise it will be colored black. Note that this coloring

induces a bipartition of the tree.

Note that there must not be any node adjacent to nodes 1 and l, that are not 2 and l − 1 respectively, as

this would contradict with the diameter definition.

Note that there must not be any chain of length 2 with nodes not part of the diameter, that is connected to

node 2 and l − 1, as this would also contradict with the diameter definition.

Finally, note that there must not be any chain of length 3 with nodes not part of the diameter, that is

connected to any node of the diameter because that would either contradict with the diameter definition or

imply the existence of a subtree isomorphic with S′.

This means that all non-leaf nodes are either in the diameter or adjacent to a node in the diameter. This

allows us to construct a strategy for Ankica that is very similar to the strategy employed for a chain. Here,

Ankica will ”move” from node 3 to node l − 2 and back, but will also take into account all neighbouring

non-leaf nodes.

More precisely, when after entering a node i on her route to node l, she will visit all non-leaf neighbours of i

that are not i+ 1, before continuing to i+ 1. She will also visit the node i between each two successive visits

to the neighbouring nodes. After visiting node l, she will reverse the walk back to node 2.

By similar reasoning to the one from section 3, we can inductively show that Ankica will catch Branko during

the first half of the walk if he starts on a white node, and that she will catch him during the second half of

the walk if he starts on a black node.

6 The optimal strategy

In the strategy from the previous section, we can differentiate between three types of nodes: leaves, inner

nodes (i.e. nodes 3. . . l − 2), and nodes adjacent to inner nodes that are not leaves.

Alice never guesses the leaf nodes, 2 times guesses each node adjacent to the inner nodes, and 2f(v)−2 times

guesses a path node v with f(v) neighbours that are not leaves. We will show that Branko can survive if any

of these nodes is guessed any less than the described number of times.

3

Case 1. Node v adjacent to the inner nodes.

Since ai = v for at most one value of i, ai 6= v must hold for either all even or all odd values of i. Therefore,

there is a way for Branko to move between v and a node adjacent to v the whole time without him being

caught.

Case 2. Node v that is an inner node.

Branko will again try to stay close to v. Let u1, u2, . . . , uk be the neighbours of v, and u′i be the neighbour

of ui that is not equal to v.

The number of times Ankica guesses v is at most 2k − 3, therefore she guesses v on at most k − 2 even and

at most k − 2 odd turns. We can assume she guesses v on at most k − 2 even turns. We will put Branko at

v on every odd turn where ai 6= v.

Now, we can divide Ankica’s guesses into chains of longest sequences where she guessed v at every odd turn.

In other words, we are looking at some ai, ai+2, . . . ai+2l all equal to v, but ai−2 6= v and ai+2 6= v. We can

choose some uj different from all ai−1, ai+1 . . . , ai+2l+1. This is possible because l < k − 2. At all odd turns

in this sequence, Branko will move to u′j .

We now know all of Branko’s whereabouts for all odd turns.

For even turns we consider where Branko is located at neighbouring odd turns. If on at least one of those

turns he is at u′j , he will be at uj on the corresponding even turn. If at both neighbouring turns he is at v,

he can simply choose any uj that Ankica will not guess on a said even turn.

This shows that the strategy from the previous section is indeed optimal.

Disclaimer: The explanations in this editorial are meant to be illustrative, rather than rigorous. Rigorously

proving each claim entails some cumbersome handling of special cases (e.g. small trees with l ≤ 2), certain

boundary checks (e.g. out of bounds indices), etc. We believe these shouldn’t pose a serious problem to the

reader that has grasped the main ideas.

4

Stones – solution

Ivan Žufić, Daniel Paleka

September 4th, 2021

This problem is a twist on the standard Nim game, with the catch that the pile to take stones from is

adversarially chosen by the opponent.

However, the solution has nothing to do with the Sprague-Grundy theory and bitwise operations. Instead,

we will only use the standard approach of separating the states into winning and losing states.

Definition 0.1. A state is the set (a1, . . . , aN) of piles, together with the index i of the pile the opponent

selected.

Let’s write down the inductive definition of losing and winning state in the context of this game:

1. The states with all piles empty are losing;

2. A state is winning if and only if the turn player can make a move that reaches a losing state;

3. A nonempty state is losing if and only if the turn player must make a move that reaches a winning

state.

The above defines a valid partition of all states by induction on the number of stones.

0.1 The first two subtasks

For the first subtask, we can explicitly enumerate all (M + 1)N ·N states (some are equivalent, but 87 · 7 is

small enough) and brute force the described induction using dynamic programming.

A good strategy for solving this problem is: implement the first subtask, get the points on the evaluator, and

then try to find some pattern.

The first thing that is easy to see from the printed moves is that the turn player should always take every-

thing or leave exactly one stone in the chosen pile. Using this observation, we can implement a dynamic

programming in time complexity O(3N).

0.2 The full solution

We can find a characterization of the losing states.

Let A be the number of piles containing exactly one stone.

Let B be the number of piles containing strictly more than one stone.

Let H be the number of stones in the currently selected pile.

If B = 0, we win if and only if A is odd. It’s easy to prove this by induction.

Otherwise, let K ≥ 1. Partition the post-pile-selection states into three types:

1

• Let type-W states be such that A is even;

• Let type-L states be such that A is odd and H = 1.

• Let type-O states be other states, i.e. A is even and H > 1.

Claim. Every type-W state is winning, and every type-L state is losing.

Proof. We have two cases.

• First case: we’re in a type-W state.

If H 6= 1 and B = 1, then we can remove all stones from the current pile, which is clearly a winning

move, since A is even.

If H = 1, we can remove the only stone in that pile and select any other pile with exactly one stone.

This is possible, since A is even. This leads to a type-L state with smaller total number of stones.

Otherwise, if H 6= 1 and B > 1, then remove H − 1 stones from the pile, and force the next player to

select the last stone from current pile. This also leads to a type-L state with smaller total number of

stones.

• Second case: we’re in a type-L state.

Note that H = 1 and A is even, so the next state will have B > 0, odd A, and it will have smaller total

number of stones.

Every type-W state leads to a type-L state or some losing state with B = 0, and every type-L state leads to

a type-W state, and in every transition total number of stones is smaller, so type-W are winning states, and

type-L are losing positons.

Remark. Type-O states are winning, but that is not important at all, since it is guaranteed that the starting

state is winning regardless of the first selected pile.

To solve the problem, implement the moves used to prove the Claim. It is enough to take O(N) time per

move, that is, O(NM) time in total.

2

Tortoise – solution

Josip Klepec

September 4th, 2021

1 Setup

Definition 1.1 (Area). An Area is a maximal continuous subsequence of locations with at least one candy

and no playgrounds.

Lemma 1.1. Tom buys candies in the order of increasing location.

Proof. We can easily prove that it is never optimal to first buy a candy from a later Area and then return to

buy a candy from a previous Area.

Then we can prove that in each Area we will buy candies in order. This is left as an exercise, as the proof is

very similar to the proof of the the next Lemma.

Lemma 1.2. In each Area, Tom will first take some candies to the left playground (possibly zero) and then

some candies to the right playground.

Proof. Assume he takes a candy to the right playground, then takes the next one to the left.

Let a < b ≤ c < d be the locations of the playground, the first and the second cady, and the right playground.

• If d−c ≤ b−a, we can take both candies to right playground and achieve better result (less time spent)

and arrive at the same time to the second candy.

• Else, we can take the first candy to the left and second candy to the right because

(d− b) + (d− a) + (c− a) > (b− a) + (d− a) + (d− c).

(we spend less time in total); and

(d− b) + (d− c) > (b− a) + (c− a)

(we will arrive earlier to the second candy).

Doing this exchange a finite number of times we can achieve that we take some prefix of candies to the left

playground and some suffix to the right.

Lemma 1.3. In each Area with a right playground, if Tom takes at least one candy, he will take at least one

to the right playground.

Proof. If he takes candies only to the left playground, he can just take the last one to the right playground.

1

Corollary 1.4. In each Area with a right playground, Tom will take at least one candy.

Definition 1.2 (Left cycle). Tom takes a candy, brings it to the left playground on his left and comes back.

Definition 1.3 (Right cycle). Tom is located at the right playground of some Area. He goes back to pick up

the candy and brings it to the playground.

Definition 1.4 (Candy walk). Tom buys a candy. Walks to the right playground and drops it there.

Lemma 1.5. If a candy is closer to the right playground, it will not be involved in a Left cycle and vice

versa.

Proof. Obviously only one of those things can happen. With exchanges we can keep the solution valid with

less time spent in this Area.

Lemma 1.6. If a candy is at the same distance to both playgrounds, it can be shown that it doesn’t matter

which cycle we do with it. We can always do left for example.

2 Greedy

Greedy algorithm works as follows.

For a candy i we use xi to denote its position and wi for twice the distance to its closest playground. We

order the candies such that w1 ≤ w2 ≤ . . .

We consider candies and its cycle in order. If adding that cycle keeps solution valid, we add that cycle.

Multiset of cycles is valid if we can manage to buy everything in time and in each Area with right playground

we can do one Candy walk (we can carry some candy to the right playground after left cycles and before

right cycles).

3 Proof

Lemma 3.1. Tom makes exactly one candy walk in any area which has a playground to its right and has at

least one candy.

We say a set of candies S is valid if Tom can pick up this set of candies, each candy in one cycle and in

addition one candy from each non-candiless area with a playground to its right.

Let SG/SO be the set of candies picked up with a cycle by the greedy/optimal algorithm, respectively. For

a candy i we use xi to denote its position and wi for twice the distance to its closest playground. We order

the candies such that w1 ≤ w2 ≤ . . .

Let Y = SG \ SO and let i = minY. Then it is enough to find a valid set S′
O with |S′

O| = |SO| and

minSG \ S′
O > i. Let X = SO \ SG. Observe that, by our greedy algorithm, we have

minX > minY = i. (1)

We consider several cases:

• There is no playground to the right of xi.

Let j be leftmost candy in X. We have wj ≥ wi by (1) and set O′ = O \ {j} ∪ {i}.
This is trivial case.

2

• Cycle i is a Left cycle and Candy walk in optimal algorithm is to the left or at the same candy as i.

a b c d e f g -1-1

greedy

optimal

Figure 1

In this example xi = c

If there exist a cycle right of i and left of Candy walk in greedy in X (locations c, d, e, f), then we

remove leftmost such j cycle and it becomes a new candy walk.

Else let j be the leftmost candy in X. New Candy walk will be the same as in greedy (location f).

In both cases we have wj ≥ wi by (1) and set O′ = O \ {j} ∪ {i}.

• Cycle i is a Left cycle and Candy walk in optimal algorithm is to the right.

a b c d e f g -1-1

optimal

Figure 2

Let j be the leftmost candy in X.

If it is left of i then Candy walk will stay the same (we removed longer cycle that happened before).

Else, j is in some Area. If it is Left cycle, Candy walk in that Area can stay the same (because we

added smaller cycle than we added and both of them happen before). But if it is the Right cycle, then

that Area can use the same Candy walk as greedy. Because prefix is the same.

Again we set O′ = O \ {j} ∪ {i}.

• Cycle i is a Right cycle.

a b c d e f g -1-1

optimal

Figure 3

Candy walk in optimal solution cannot be to the right of i because that cycle would then also be in

greedy (greedy takes some suffix of Right cycles).

3

Let j be the rightmost left of i u X if such exists. If the candy walk was at xi and needs to be moved

to the left then we can set candy walk to any available candy in this Area. Such will exist because we

will remove either the last left cycle in this Area or some bigger cycle. And candy will be available for

a candy walk because greedy algorithm is also valid.

Otherwise let j be the leftmost in cycle in X. This case is similar to the previous one.

4 The algorithmic parts

4.1 First subtask

This can be achieved with dynamic programming and bitmasks (with state mask, time, position). Or just

using the assumption that Tom will take candies in order and then using solely bitmasks.

4.2 Second subtask

This can be achieved with dynamic programming keeping time, position, position of last taken candy and a

boolean saying whether we have a candy in hand.

4.3 Third subtask

This can be achieved with dynamic programming. We are using result of Lemma 1.2. Having boolean did

we start taking candy to the right playground in current Area.

4.4 The full solution

We simulate the greedy algorithm described in 2. To get full points one should use some kinda of data

Structure to check validity when adding a cycle.

For the fourth subtask, it is enough to implement this validity check in linear time. And for full points we

can keep how many seconds before Wilco we get to every shop.

4

Wells – solution

Domagoj Bradač

September 4th, 2021

1 Notation

We denote the given tree by T = (V,E). We write P (u, v) for the unique path from u to v in T and d(u, v)

for the number of edges in P (u, v). The diameter of T is a longest (simple) path in T. We denote a fixed

diameter of T by D and imagine the edges not on D to be directed away from D. Given a vertex v ∈ T, we

write r(v) for the closest vertex of v on D (if v ∈ D, then r(v) = v). We write Tv for the subtree rooted at

v following the directed edges away from the diameter. We denote by h(v) the height of Tv and by bv some

vertex on the “bottom“ of Tv, that is, bv ∈ Tv and d(v, bv) = h(v).

We define a partial colouring of T as follows: we say that a vertex is coloured red if it is marked, blue if it is

not marked and uncoloured if we have not yet decided whether or not it is marked. Given a partial colouring

c, a path of length k − 1 is said to be invalid with respect to c if it contains more than one red vertex or all

its vertices are coloured blue, otherwise it is valid. A (partial) colouring is invalid if it contains an invalid

path of length k− 1, otherwise it is valid. A colouring is complete if all vertices are coloured (red or blue). A

partial colouring c is an extension of a partial colouring c′ if c(v) = c′(v) for any vertex v which is coloured

under c′.

2 Observations

Recall the following fact about a diameter of a tree.

Fact 2.1. Suppose z`, zr are endpoints of a diameter of T. Then for any vertex v ∈ T :

max
u∈T

d(v, u) = max{d(v, z`), d(v, zr)}.

Let D = (d1, d2, . . . dL) be a diameter of T with endpoints z` = d1 and zr = dL. If L < k, then there is no

path of length k− 1 in T, so the answer is YES and the number of colourings 2n. Now, assume L ≥ k. Then,

there are k ways to colour the diameter, for any 1 ≤ i ≤ k, we colour the vertices di, di+k, di+2k, . . . red and

the other vertices of D blue.

We say a path P is crossing if both its endpoints are not in D and it contains a vertex in D.

Claim 2.2. Let c be an arbitrary complete colouring of T. Then c is valid if and only all non-crossing paths

are valid with respect to c.

Proof. Suppose this is not the case, and consider a crossing path P of length k − 1 with endpoints u, v.

Assume without loss of generality that zl, r(u), r(v), zr appear in this order on D, with possibly some of these

1

u

v

r(u)
r(v)

u′
v′z` zr

Figure 1

vertices being identical. Since D is a diameter, there exists a vertex v′ ∈ D such that d(u, v′) = d(u, v) = k

and r(v) lies between r(u) and v′. Analogously, there exists a vertex u′ ∈ D such that d(u′, v) = d(u, v) = k

and r(u) lies between u′ and r(v) (see Figure 1). Note that

d(u′, v′) = d(u, v′) + d(u′, v)− d(u, v) = k + k − k = k.

For vertices x, y let fc(x, y) denote the number of red vertices in P (x, y) under the colouring c and note that

a path P (x, y) of length k − 1 is valid if and only if fc(x, y) = 1. Then:

fc(u, v) = fc(u, v
′) + fc(u

′, v)− fc(u
′, v′).

Under our assumptions, the paths P (u, v′), P (u′, v) and P (u′, v′) are valid, implying fc(u, v) = 1. In other

words, P (u, v) is valid as well.

Consider a vertex v not on the diameter such that

h(v) + max{d(v, zl), d(v, zr)} < k − 1. (1)

As D is a diameter, this implies there is no path of length k − 1 containing v. Hence, v can be coloured

arbitrarily without changing the validity of the colouring. We delete all vertices satisfying (1) and multiply

the number of colourings by 2 for each deleted vertex. From now on, we assume there are no vertices satisfying

(1).

Claim 2.3. Let c be a partial colouring and let v be a vertex such that there exists a path of length at least

k − 1 containing v and a vertex coloured red under c. Then in any proper extension of c, the colour of v is

the same. In other words, if such a path exists, the colour of v is uniquely determined.

Proof. We need to show that the colour of v is uniquely determined by the partial colouring c. This follows

immediately. Let P be a path of length at least k − 1 containing v and a red vertex under c. Observe that

every kth vertex on P must be red. Since there is a red vertex u on P, it follows that v is red if and only if

d(u, v) ≡ 0 (mod k).

Claim 2.4. Suppose there is a path of length k − 1 not touching D. Then, there are at most two ways to

colour D which can be extended to a complete valid colouring.

Proof. Let P = P (u, v) be a path of length k − 1 not touching D. As D is a diameter, this implies:

d(u, zl), d(u, zr), d(v, zl), d(v, zr) ≥ k − 1.

2

As P does not touch D, we have r(u) = r(v) = r. Assume that d(r, u) ≥ d(r, v), implying d(r, u) ≥ (k− 1)/2.

Observe that on P (u, zl) every kth vertex must be red and the same holds for P (u, zr). It is easy to see that

this can only happen if r is red or k is odd and r is in the middle of two consecutive red vertices on D.

Definition 2.5. Let U be a tree rooted at a vertex r and let t be a nonnegative integer. Define the depth

of a vertex v ∈ U as d(r, v). A complete colouring of U is a t-covering of U if:

• every red vertex is at depth at most t; and

• for every vertex u such that d(r, u) ≥ t, there is exactly one red vertex on P (r, u).

Definition 2.6. We call a vertex v 6∈ D pinned if

h(v) + min{d(v, z`), d(v, zr)} ≥ k − 1, (2)

and loose, otherwise.

Claim 2.7. Let v 6∈ D be a loose vertex. Without loss of generality, assume h(v) + d(v, z`) < k − 1 and

h(v) + d(v, zr) ≥ k − 1. Let c be a valid partial colouring in which the following vertices are coloured:

• all vertices in D,

• all vertices on the path P (v, r(v)) except v.

Consider extensions of c obtained by colouring the vertices of Tv in some way. Then

a) if there is a red vertex in c on the path P (v, zr), there is a unique valid extension,

b) otherwise an extension is valid if and only if it forms a t-covering of Tv with t = k − 1− d(v, zr).

Proof. We consider the two cases in order.

a) Then for any u ∈ Tv, we have d(u, z`) + h(u) < k− 1, implying d(u, zr) + h(u) ≥ k− 1. By assumption

there is a red veretx on P (u, zr) so by Claim 2.3, the colour of u is uniquely determined.

b) Note that any non-crossing path of length k − 1 with one endpoint in Tv has the other endpoint in

P (r(v), zr). This follows directly from d(u, z`) < k− 1 and the fact that D is a diameter. Now consider

a path P (u,w) of length k − 1 where u ∈ Tv and w ∈ P (r(v), zr). By assumption there are no red

vertices in P (v, zr) \ {v}. Hence, for c′ to be valid there must be exactly one red vertex in P (u, v). In

other words, c′ forms a t-covering of Tv. It is easy to see that the converse also holds: if an extension

of c obtained by colouring Tv forms a t-covering of Tv, then it is valid.

Let us summarize what we have shown so far. We may delete all vertices satisfying (1). Given a colouring

of D, consider the vertices v ∈ T \D which are loose but their parent is on D or is pinned. Then, either the

colouring of Tv is uniquely determined or there is an integer t such that the colouring of Tv is any t-covering

of Tv. The colours of all other vertices are uniquely determined by the colouring of D. Now, consider a

colouring c satisfying these properties and suppose P is a path of length k− 1 invalid under c. By Claim 2.2,

P is non-crossing. Recall that we first colour D and then extend this colouring to other vertices in a way

that paths touching D are valid, so by construction, P does not intersect D. By Claim 2.4, if such a path P

exists there are at most two ways to colour D and these two ways can be easily determined. Consider one

such colouring and extend it to all pinned vertices in a unique way and to all loose vertices as described by

Claim 2.7. By construction, any path invalid path under such a colouring is disjoint from D and contains

only pinned vertices.

3

3 The algorithm

First, remove all vertices satisfying (1) and multiply the number of colourings by 2 for each deleted vertex.

For any vertex v 6∈ D such that v is loose but its parent is on D or is pinned, using dynamic programming

calculate the number xv of t-coverings of Tv with the appropriately chosen value of t. Then, for a colouring

of D for which the colouring of Tv is not uniquely determined (as given by Claim 2.7), multiply the number

of ways to extend this colouring by x. Finally, if there is a path of length k − 1 not touching D, then there

are at most two colourings of D and for each of them we can easily check whether they can be extended to

a complete colouring.

The algorithm can be implemented to run in time O(n). Let us elaborate. Finding the diameter and deter-

mining which vertices satisfy (1) and which are pinned can easily be done in linear time. Computing the

number of t-coverings is done in linear time using dynamic programming. If there is a path of length k − 1

not touching D there are at most two colourings of D we need to consider. The validity and number of

extensions of each of these can be done in linear time. Finally, assume there is no path of length k−1 disjoint

from D. Consider a vertex v ∈ T \D which is loose but its parent is on D or pinned, that is, v is a vertex for

which we need to calculate the number of t-coverings, denoted by xv, for some t = t(v). As v is loose, either

h(v)+d(v, z`) < k−1 or h(v)+d(v, zr) < k−1 and assume the former holds, the other case being analogous.

By Claim 2.7, for any colouring of D for which all the vertices on P (v, zr) (which is uniquely determined)

are blue, we need to multiply by x the number of ways to extend this colouring of D. In other words, if we

enumerate the k possible colourings of D in the natural way, we arrive at the following problem. We are given

at most n cyclic intervals Ij of residues modulo k, where each interval Ij , ends with 0 (if d(v, z`) < k − 1)

or starts with d(z`, zr) mod k (if d(v, zr) < k − 1), and values xj for each of these intervals. For each residue

y ∈ [0, k − 1), we need to calculate the product ∏
j| y∈Ij

xj .

This can be done in time O(n), without calculating any modular inverses, by considering separately the

intervals starting with 0 and those ending with d(u`, ur) mod k and calculating prefix products in linear time.

4 Subtasks

In this last section, we describe possible partial solutions to this problem. Observing some of the facts

mentioned in Section 2 can lead to various solutions. It seems difficult to anticipate all possible variations

and here we describe only some of the possibilites. All of the described solutions can be implemented with

or without counting the number of valid colourings which yields 60% of points for the subtask.

Note that whenever a t-covering is required in the above solution, one can replace it with a 0-covering, that

is, only colour the root of the subtree. It is easier to show this is valid (if there exists a valid colouring at

all) and it is simpler to check as it is only a single colouring. This way a solution worth 60% of points can

be obtained (for any subtask).

4.1 O(N2K) – 30 points

We represent the colouring of D by K Boolean variables x0, x1, . . . , xK−1, where vertex di is marked if and

only if the value of xi mod K is true. We label each vertex di with i mod K and extend this labelling to all

pinned vertices as follows. Let v be a pinned vertex. If there exists a vertex u on D whose distance from v

is divisible by K, then give v the label of u. Otherwise, label v with −1 (meaning that it cannot possibly be

4

marked). We know that exactly one of x0, x1, . . . , xK−1 is true, and that xi can be true if and only if i occurs

exactly once on every path of length K − 1 consisting only of pinned vertices/vertices on D. Finally, for

each i ∈ {0, 1, . . . ,K − 1} with this property (call such an i good), we calculate the corresponding number of

colourings as previously described. This approach has complexity O(N2K) because there are O(N2) paths

of length K − 1 and naively updating the set of good indices takes O(K) time.

4.2 O(N2) – 20 points

The approach in this case is basically the same as in the previous subtask, except that we more efficiently

maintain the set of good indices while traversing the paths of length K − 1. We traverse the tree starting at

every possible vertex and keep a list of indices that do not occur exactly once on the current path but are not

yet marked as bad. When we reach the end of a path of length K − 1, we mark all vertices in the list as bad

and clear the list. The list can be maintained by keeping for each index the number of its occurrences on the

current path and its index in the list (or −1 if it is not an element of the list). In this way, the operations of

adding elements to the list and removing elements from the list can be implemented to run in constant time.

4.3 O(N logN) – 20 points

Consider one of the K possible colourings of D. Additionally, colour red any vertex which is at distance

divisible by k from any red vertex on D. Finally, check whether this colouring is valid. Observe that this

way each vertex is coloured red at most twice across all K colourings of D. Suppose we fixed a colouring

of D, extended it as described, yielding M red vertices in total. Using the auxiliary tree formed by these

vertices (the tree containing the M vertices and all pairwise lowest common ancestors), which has size O(M),

it is possible to check the vailidity of the given colouring in time O(M logM). Hence, this algorithm can be

implemented to run in time O(N logN). However, the implementation of this approach is very difficult.

5

