
Day 1
Task: light

Spoiler

A Light Inconvenience (light)
by Fabian Gundlach

Subtask 1. Only one call to leave per testcase

For this subtask, it will be convenient to reindex the performers, numbering them from right to left,
starting at 1. (Any call to join or leave will then result in an index shift). Moreover, we will always only
remember the sequence 1 = 𝑓1 < 𝑓2 < ⋯ of performers whose torches are on fire.
Let’s think about this problem greedily: what condition do we need to put on the 𝑓𝑖’s to be able to
survive the next act?

We can always handle the next call to join with 𝑡𝑎 = 𝑝𝑎: we can simply shift everything to the
right by 𝑝𝑎 (i.e. keeping the previous 𝑓𝑖’s), adding further fires on the left if desired.
We can handle a single call to leave by announcing 𝑡𝑎 = 𝑝𝑎 if and only if 𝑓𝑖 ≤ 2𝑓𝑖−1 + 1 and the
leftmost torch is on fire: the first condition is necessary since having all performers starting at
𝑓𝑖 leave will have 𝑝𝑎 = 𝑓𝑖, and we have to light the torch of performer 𝑓𝑖 +1; the second condition
is necessary to handle all but the leftmost performer leaving.
On the other hand, it is not hard to check that this also sufficient to handle any call to leave: if
we just announce 𝑝𝑎, this is enough to light the torch of the rightmost performer remaining on
stage.

This suggests taking 𝑓𝑖 = 2𝑖−1 (plus the leftmost performer) before the first call to leave, and then
e.g. extinguishing all torches except the rightmost one. For any call to join after that, we can simply
shift everything to the right again without adding further flaming torches. This will never have more
than log2 𝑁+1 torches on fire at the same time, which easily fits into the limit specified in the statement.

Subtask 2. 𝑁 ≤ 700

Let us index the torches as in the task statement again. It suffices to announce 𝑓1 = 1, 𝑓2 = 6, 𝑓2 =
11,… , 𝑓𝑘 = 𝑛 (where 𝑛 is the number of performers currently in line) at the end of any act; this will in
fact only require 𝑡𝑎 = 4 for any leave or 𝑡𝑎 = 4𝑝𝑎 for join. The maximum number of flaming torches is
1
5𝑁 + 1.

Subtask 3. 𝑁 ≤ 5000

The previous solution does not make use of the fact that we are allowed to announce large numbers
whenever 𝑝𝑎 is sufficiently large, giving us much more freedom.
Intuitively, we should exploit this by having much more fires near the right end of the line. Consider the
following straegy: fix a number 𝐾 and split the performers into blocks of length 𝐾, starting on the left.
We will always guarantee that the leftmost performer in each block (i.e. performers 1, 𝐾 + 1, 2𝐾 + 1,… )
holds a flaming torch. Moreover, every torch in the last block should be on fire.
Again any call to join would be trivial to handle. If we have a call to leave, however, we would run
into a problem to uphold our invariant when all 0 < 𝑘 ≤ 𝐾 performers of the last block leave, as we
will need 𝑡𝑎 = 𝐾 − 1 to fill up the last block. To avoid this issue, we will always hold some additional
torches in the penultimate block: namely, we will have the leftmost ℓ torches on fire, where ℓ is the
number of torches missing in the last block. As a result:

If 𝑗 < 𝑘 performers leave, we just announce 𝑡𝑎 = 𝑗 to add fires to the penultimate block.
If 𝑘 ≤ 𝑗 < 𝐾 performers leave, announcing 𝑡𝑎 = 𝑗 is now enough to fill up the new final block (and
it is never a problem to add the fires on the left of the new penultimate block).

1/3



Day 1
Task: light

Spoiler

If at least 𝐾 performers leave, we are free to do whatever we want in any block anyhow.
Again, the invariant is also trivial to uphold in join.
The maximum number of torches on fires is 𝑁/𝐾 + 𝐾, so taking 𝐾 = 75 suffices to solve this subtask.

Subtask 4. 𝑁 ≤ 25000

This is exactly as in the previous subtask, except that we now exploit that we are allowed to announce
up to 𝑡𝑎 = 5𝑝𝑎, which allows us to increase the distance between the torches by a factor of 5.

Subtask 5. 𝑁 ≤ 100000

The solution to this subtask interpolates between the solution to Subtask 3 presented above and the
first full solution discussed below to achieve 𝑡𝑎 = 𝑝𝑎 with at most 𝑂(

3√𝑁) fires.

Subtask 6. 𝑁 ≤ 500000

Again, this can be solved by spreading out the fires from the previous solution by a factor of 5.

Subtask 7. No further constraints.

There are at least two different approaches that yield full score:

First full solution. Having blocks of a fixed size will of course only ever get us that far, so let us
combine this with the idea of having the distances between the fires grow exponentially as we walk
from right to left. A first attempt to implement this strategy might be to always have for any 𝑘 a
flaming torch at the largest multiple of 2𝑘 that is ≤ 𝑛. Unfortunately, this does not work for similar
reasons as in the third subtask: when 𝑛 itself is a power of 2, then reducing 𝑛 by 1 will still incur a
large cost. Fortunately, also the solution to this problem is similar (although the analysis is somewhat
harder this time): we enforce flaming torches at the two largest multiples of 2𝑘 for each 𝑘, and up to
one additional torch in the penultimate block of size 2𝑘 to light the third largest multiple of 2𝑘−1 if
this becomes necessary during leave.

Second full solution. Let us analyze the solution to the very first subtask more closely, for which we
again flip our indexing. We have seen that we can handle a single call to leave if and only if 𝑓𝑖 ≤ 2𝑓𝑖−1 +1
for all 𝑖 and the leftmost torch is on fire. Moreover, we can trivially maintain this invariant for any call
to join.
The crucial observation now is that we can also uphold this invariant for any call to leave by announcing
𝑝𝑎 and then selecting fires as follows: assumewe have already selected new torches 1 = 𝑔1 < 𝑔2 < ⋯ < 𝑔𝑖
satisfying the above; to select the next torch, we have to show that one of the torches 𝑔𝑖 + 1,… , 2𝑔𝑖 + 1
is on fire. This is obviously true if one of these torches is the leftmost one or if 𝑔𝑖 < 𝑝𝑎. In the remaining
case, consider the smallest 𝑗 with 𝑓𝑗+1 − 2𝑝𝑎 > 2𝑔𝑖 + 1 (note that 𝑓𝑗+1 − 2𝑝𝑎 is the rightmost torch lit by
the performer that was previously at position 𝑓𝑗+1). Then 𝑓𝑗 − 2𝑝𝑎 < 2𝑔𝑖 + 1 by minimality, but also

𝑓𝑗 − 𝑝𝑎 ≥
𝑓𝑗+1 − 1
2

− 𝑝𝑎 > 𝑔𝑖.

Thus, at least one of the torches 𝑓𝑗−2𝑝𝑎, … , 𝑓𝑗−𝑝𝑎 (all of which are currently on fire) lies in {𝑔𝑖+1,… , 2𝑔𝑖+1}
as claimed.
We now have to be slightly clever in selecting the 𝑔𝑖’s in order to ensure that our program runs in
time and that there aren’t too many torches on fire.

2/3



Day 1
Task: light

Spoiler

One way to do so is to always pick the largest 𝑔𝑖+1 possible, which guarantees that 𝑔𝑖+2 > 2𝑔𝑖 + 1
and hence ensures that we only ever have at most 2 log2 𝑁 + 𝜖 torches on fire.
More generally, you can come up with any reasonably time-efficient way to construct the 𝑔𝑖’s and
then ‘sparsify’ your result using the previous observation. For example, one uniform way that
avoids the above case distinction is to start with the values 𝑓𝑗 − 𝑝𝑎 plus the rightmost performer
and then double each of them until you would run past one of the previously constructed
elements.

Partial solutions. While we only described the full solutions above, there are various ways to obtain
partial scores on the last subtask. One way to do so is to use larger bases in the above construction,
i.e. only guaranteeing that 𝑓𝑖 ≤ 𝛼𝑓𝑖−1 + 1 for some 𝛼 > 1. This becomes relevant if one uses less clever
ways to sparsify the fires, which would otherwise result in too many torches being on fire.
In addition, there are several ad-hoc constructions.

3/3



Day 1
Task: grading-server

Spoiler

Bring Down the Sky Grading Server (grading-server)
by Tobias Lenz and Lucas Schwebler

We write 𝑁 for the maximum allowed value of 𝑐H, 𝑓H, 𝑐G, 𝑓G. Moreover, we say that a player sabotages
the other player if they take down one of their firewalls.

Subtask 1. 𝑆, 𝑐H, 𝑓H, 𝑐G, 𝑓G ≤ 75

We can represent every possible state of the game with a tuple of four integers (𝑐1, 𝑓1, 𝑐2, 𝑓2), where
(𝑐1, 𝑓1) are the computing power and number of firewalls of the current player and (𝑐2, 𝑓2) are the
same for the other player. There are 𝑂(𝑁4) such states, and so we use dp to compute whether each
state is a winning or losing state for the first player. This works using the standard observation that a
state is winning if and only if it can reach a losing state.

Subtask 2. 𝑆, 𝑐H, 𝑓H, 𝑐G, 𝑓G ≤ 300

Lemma 1. If (𝑐1, 𝑓1, 𝑐2, 𝑓2) is winning for player 1, then the state is still winning if we increase 𝑐1 or 𝑓1.
In the same way, if the initial state is losing, it stays losing if we increase 𝑐2 or 𝑓2.

Thus, we can compute 𝐶(𝑓1, 𝑐2, 𝑓2) as the minimum 𝑐1 such that (𝑐1, 𝑓1, 𝑐2, 𝑓2) is a winning state. This
can be done with dp in 𝑂(𝑁3 log𝑁) with binary search. It’s also possible to compute it in 𝑂(𝑁3) using
𝐶(𝑓1, 𝑐2, 𝑓2) ≤ 𝐶(𝑓1, 𝑐2 + 1, 𝑓2).

Implementation detail. One has to be careful when implementing this. Otherwise, the dp might get
cyclic dependencies when player 1 attacks. This can be solved by also trying both possible moves for
player 2 after an attack by player 1.

Subtask 3. 𝑆 = 1

Define 𝛼1 ≔ 𝑐1 − 𝑆 ⋅ 𝑓2 and 𝛼2 ≔ 𝑐2 − 𝑆 ⋅ 𝑓1. Intuitively, those values represent the damage caused by a
player if they attack the other. Obviously, if 𝛼1 ≤ 0, the only sensible choice for player 1 is to sabotage.
In this interpretation, taking down a firewall just increases 𝛼1 by 𝑆 and this move can be preformed at
most 𝑓2 times. Thus, increasing 𝑓2, for a fixed 𝛼1, makes a state better for player 1, i.e. if (𝛼1, 𝑓1, 𝛼2, 𝑓2)
is a winning state, so is (𝛼1, 𝑓1, 𝛼2, 𝑓2 + 1).

Lemma 2. If 𝛼1 ≥ 𝑆 and 𝛼2 ≤ 𝑆, there is a winning strategy for player 1.

Proof. Player 1 can maintain this invariant by attacking: Afterwards the new value of 𝛼2 is 𝛼2 − 𝛼1 ≤
𝑆 − 𝑆 = 0. Thus, player 2 has to sabotage. Then, we still have 𝛼2 ≤ 𝑆, and 𝛼1 remains unchanged.

Lemma 3. If 𝛼2 ≥ 𝑆, it is optimal for player 1 to attack.

Proof. Assume for contradiction this were not the case and pick a (𝛼1, 𝑓1, 𝛼2, 𝑓2) with 𝛼2 ≥ 𝑆 and 𝑓2
minimal, such that sabotaging is a winning move, but attacking is not. In particular, 𝑓2 ≥ 1.
Suppose that player 1 sabotages, increasing 𝛼1 by 𝑆. If player 2 attacks, this will decrease 𝛼1 back to a
value 𝛼′1 ≤ 𝛼1. As sabotaging was assumed to be a winning move, the new position (𝛼

′
1, 𝑓1, 𝛼2, 𝑓2 − 1) is

a winning position, hence so is (𝛼1, 𝑓1, 𝛼2, 𝑓2 − 1). By minimality of our counterexample this means that
attacking is a winning move in this position, i.e. (𝛼2, 𝑓2 − 1, 𝛼1, 𝑓1) is losing. But then also (𝛼2, 𝑓2, 𝛼1, 𝑓1)
has to be losing by the above observation, i.e. attacking was a winningmove in the original position.

1/4



Day 1
Task: grading-server

Spoiler

Combining those observations with 𝑆 = 1, we can obtain an optimal strategy for player 1. It turns out
that whether a state is winning does not depend on 𝑓1, 𝑓2. Let 𝑤(𝛼1, 𝛼2) be true if player 1 wins and
false otherwise. Using the above observations, we can calculate 𝑤 recursively:

𝑤(𝛼1, 𝛼2) = {
¬𝑤(𝛼2 − 𝛼1, 𝛼1) if 𝛼1, 𝛼2 > 0,
true if 𝛼1 ≥ 𝛼2,
false otherwise.

Evaluating this formula recursively has running time 𝑂(log𝑁) because we repeatedly subtract one
value from the other, similar to the Euclidean Algorithm, until one of them becomes ≤ 0.

Subtask 4. 𝑆, 𝑐H, 𝑓H, 𝑐G, 𝑓G ≤ 2 000

We can reuse Lemma 2 and 3. This way, we know the optimal strategy if 𝛼1 ≤ 0, 𝛼1 ≥ 𝑆 or 𝛼2 ≥ 𝑆. Notice
that if 𝑓2 > 0 and 𝛼2 ≤ 0, player 1 can sabotage and win with Lemma 2. Thus, the only cases in which
we don’t know the optimal strategy are those which satisfy

0 < 𝛼1, 𝛼2 < 𝑆, 𝑓2 > 0, and 𝑓1, 𝑓2 ≤
𝑁
𝑆
.

The last inequality must hold because otherwise at least one 𝛼𝑖 would be negative. We can compute a
dp for these unknown states to determine which player wins. There are 𝑂(𝑁2) many such states and
each reduction takes 𝑂(log𝑁) by a similar analysis as above.

Subtask 5. 𝑆 ≤ 400

Suppose that the game is an interesting state, so we don’t know the optimal move yet. If player 1
sabotages, this increases 𝛼1 to a value > 𝑆. Thus, player 2 has to attack. In total, this increases 𝛼1 by
𝛽2 ≔ 𝑆 − 𝛼2. Define 𝛽1 ≔ 𝑆 − 𝛼1 similarly.

Lemma 4 (Death by sabotage). Player 1 has a winning strategy if 𝛽2 ⋅ 𝑓2 ≥ 𝛽1.

Proof. Player 1 sabotages 𝑓2 times in a row. This increases 𝛼1 by 𝑓2 ⋅𝛽2. If 𝛽2 ⋅𝑓2 ≥ 𝛽1, then 𝛼1+𝛽2 ⋅𝑓2 ≥ 𝑆
and so player 1 wins by Lemma 2.

Now all interesting states satisfy 𝛽2 ⋅ 𝑓2 < 𝛽1 < 𝑆. Before attacking, player 1 needs to make sure
that player 2 cannot apply the same strategy to win. After the attack of player 1, 𝛼2 is at least −𝑆. If
𝛽1 ⋅ 𝑓1 ≥ 2𝑆, player 2 can make 𝛼2 larger than 𝑆—and therefore win—by taking down all firewalls. So
player 1 must not attack if 𝛽1 ⋅ 𝑓1 ≥ 2𝑆.

Lemma 5. There are 𝑂(𝑆2 log 𝑆) interesting states.

Proof. Using the standard approximation of the harmonic series we compute the number of interesting
states as

∑
𝛽1,𝛽2,𝑓1,𝑓2

[𝛽1𝑓1 ≤ 2𝑆][𝛽2𝑓2 ≤ 𝛽1] ≤ ∑
𝛽1

∑
𝛽2

2𝑆
𝛽1

⋅
𝛽1
𝛽2

= 𝑂 (∑
𝛽1

2𝑆 log 𝛽1) = 𝑂(𝑆
2 log 𝑆).

Subtask 6. 𝑓H, 𝑓G ≤ 125

We now present a solution which is fast when 𝑓1, 𝑓2 are small.

2/4



Day 1
Task: grading-server

Spoiler

Lemma 6. For fixed 𝑓1, 𝑓2 there exists a critical attack value 𝛾 ≔ 𝛾(𝑓1, 𝑓2) such that it is optimal for
player 1 to attack if 𝛼2 ≥ 𝛾 and optimal to sabotage otherwise.

Proof. Consider the states 𝑇1 = (𝛼1, 𝑓1, 𝛼2, 𝑓2) and 𝑇2 = (𝛼1 + 1, 𝑓1, 𝛼2 + 1, 𝑓2).
If attacking is a winning move in 𝑇1, it is also a winning move in 𝑇2: Indeed, after the attack we
get the states

𝑇 ′1 = (𝛼2 − 𝛼1, 𝑓2, 𝛼1, 𝑓1) and 𝑇 ′2 = (𝛼2 − 𝛼1, 𝑓2, 𝛼1 + 1, 𝑓1).

Those states are identical except for the value of 𝛼1. Since it’s higher in 𝑇 ′2, the latter state is
still winning for player 1.
If sabotaging is a losing move in 𝑇1 it is also in 𝑇2: Indeed, after sabotaging and the necessary
following attack by player 2, we are in the states

𝑇 ′1 = (𝛼1 + 𝑆 − 𝛼2, 𝑓1, 𝛼2, 𝑓2 − 1) and 𝑇 ′2 = (𝛼1 + 𝑆 − 𝛼2, 𝑓1, 𝛼2 + 1, 𝑓2 − 1).

For fixed 𝑓1, 𝑓2 let now ℎ𝐴(𝛼2) denote the minimum 𝛼1 with which player 1 wins if he attacks in the
state (𝛼1, 𝑓1, 𝛼2, 𝑓2), and let ℎ𝐹(𝛼2) be the same if he sabotages. From the above points it follows that

ℎ𝐴(𝛼2 + 1) ≤ ℎ𝐴(𝛼2) + 1 and ℎ𝐹(𝛼2 + 1) ≥ ℎ𝐹(𝛼2) + 1,

hence ℎ𝐹(𝛼2 +1)−ℎ𝐴(𝛼2 +1) ≥ ℎ𝐹(𝛼2) −ℎ𝐴(𝛼2). So the difference 𝛿(𝛼2) ≔ ℎ𝐹(𝛼2) −ℎ𝐴(𝛼2) is increasing in 𝛼2.
Noticing that attacking is an optimal move for every 𝛼1 if and only if 𝛿(𝛼2) ≥ 0 finishes the proof.

Observe that once we know all the critical attack values, we can simply simulate the game completely
to determine the winner, which in turn allows us to compute all the 𝛾(𝑓1, 𝑓2) recursively. To compute
𝛾(𝑓1, 𝑓2), we use binary search to find minimum 𝛼2 with ℎ𝐴(𝛼2) ≤ ℎ𝐹(𝛼2). Computing ℎ𝐴, ℎ𝐹 is also done
with binary search.
However, to make the simulation efficient enough, we will have to do several sabotages in one step,
which requires us to find for a given state the largest 𝑓′2 ≤ 𝑓2 such that attacking is optimal. This can
be done using binary search on a segment tree. A somewhat intricate analysis* then reveals that
our simulation only takes 𝑂(log log 𝑆) rounds, leading to a runtime of 𝑂((𝑄 + 𝐹2 log2 𝐹) log𝑁 log log 𝑆)
where 𝐹 denotes the maximum value of 𝑓1, 𝑓2.

Subtask 7. No further constraints

The winning strategy from subtask 5 tries to take down all firewalls. Let’s try to take down 𝑥 firewalls,
let player 2 do something, and take down the remaining 𝑓2 − 𝑥 firewalls in the next step. Suppose
that the current state is interesting in the sense of subtask 5. If player 1 attacks, player 2 cannot
increase the value of 𝛼2 to 𝑆 (otherwise the state would not be interesting). If player 1 takes down 𝑥
firewalls before attacking, his new 𝛽′1 equals 𝛽1 − 𝛽2𝑥. Thus, even if player 2 takes down all firewalls,
he will have 𝛼2 ≤ 𝑆 − 𝛽2𝑥𝑓1 because every sabotage will increase 𝛼2 by 𝛽′2 instead of 𝛽2. This means
𝛽′2 ≥ 𝛽2𝑥𝑓1. Now, player 1 takes down all remaining firewalls, increasing 𝛼1 by at least 𝛽2𝑓1𝑥(𝑓2 − 𝑥). If
we now specialize to 𝑥 ≔ 1

2𝑓2, this leads to an increase of
1
4𝛽2𝑓1𝑓

2
2 . Since 𝛼1 > −𝑆 before player 1 takes

down the remaining firewalls, we see that this gives player 1 a winning strategy if

𝛽2𝑓1𝑓
2
2 > 8𝑆.

Note that in case of 𝑓1 = 0 player 1 can still apply the same strategy if 𝛽2𝑓22 > 8𝑆, while the case with
𝑓2 = 0 is not interesting because player 1 has to sabotage. So all interesting states satisfy 𝑓2 > 0 and
𝛽2max{𝑓1, 1}𝑓22 ≤ 8𝑆.

* An important step in this analysis is to show that if player 1 attacks, player 2 has to sabotage until 𝑓′1 ≤
𝑓1
𝑓2
.

3/4



Day 1
Task: grading-server

Spoiler

Lemma 7. There are 𝑂(𝑆 log 𝑆) tuples (𝑓1, 𝛽2, 𝑓2) with 𝑓2 > 0 satisfying 𝛽2max{𝑓1, 1}𝑓22 ≤ 8𝑆.

Proof. For any 𝑝 ≥ 0, there are
𝑝

∑
𝑓2=1

⌊𝑝/𝑓22 ⌋ ≤ 𝑝
∞

∑
𝑓2=1

𝑓−22 < 2𝑝

pairs (𝑓1, 𝑓2) with 1 ≤ 𝑓1, 𝑓2 and 𝑓1 ⋅ 𝑓22 ≤ 𝑝 because the sum
∞
∑
𝑖=1
𝑖−2 converges to 𝜋2

6 < 2. Taking 𝑝 = 8𝑆/𝛽2
and summing over all 𝛽2 then gives the desired bound.

For every such tuple, we compute the minimum 𝑐1 with which the state is winning with binary search;
this gives us an 𝑂(𝑆 log2 𝑆) solution. Again, one needs to implement this carefully to prevent cyclic dp
dependencies.

Final remarks.

Combining the solutions for the last two subtasks with some additional ideas, it is also possible to
solve this problem in time 𝑂(√𝑆 log4 𝑆+𝑄√𝑆 log 𝑆 log log 𝑆). Suppose that we are in an interesting state
and player 1 attacks. This implies that we had 𝑓2 < 𝛽1 (otherwise, use death by sabotage). After the
attack, player 2 sabotages some rounds until he gets into an interesting state. Then, 𝑓21𝑓

2
2 < 𝑓

2
1𝑓2𝛽1 < 8𝑆.

Notice that there are only 𝑂(√𝑆 log 𝑆) such pairs (𝑓1, 𝑓2). Use the idea of subtak 6 for them, leading
to a precomputation time of 𝑂(√𝑆 log4 𝑆). To answer a query, we simply try all possible number of
sabotages before player 1 attacks. For every of those number of sabotages, we can find the winner
very efficiently using the idea from subtask 6. Since 𝑓2 ≤ √8𝑆, the number of sabotage rounds to try
is quite small and we get the above time complexity. This is fast enough to solve the problem for
constraints 𝑆 ≤ 106, 𝑄 ≤ 25 000.

4/4



Day 1
Task: balance

Spoiler

Brought Down the Grading Server? (balance)
by Lukas Michel

We say that the submissions to a task are balanced if the maximum and minimum number of submis-
sions for this task during the rejudging differ by at most one.

Subtask 1. 𝑆 = 2 and 𝑁, 𝑇 ≤ 20

In this subtask, we can simply enumerate all possible ordered assignments and output one for which
the submissions to all tasks are balanced. This can be implemented in time 𝑂(2𝑁 ⋅ (𝑁 + 𝑇)).

Subtask 2. 𝑆 = 2

First, consider the case where the total number of submissions to each task is divisible by 2. In fact,
in this case we can assume that every task has exactly 2 submissions: we can simply replace a task
with 𝑠 submissions by 𝑠/2 tasks with 2 submissions each. If the number of submissions to each of the
new tasks is balanced, this is also true when we replace them again with the initial task.
Now we have to make sure that the two submissions to each task and the two submissions in the list of
each core are assigned to different timeslots. Note that these submissions form cycles of submissions
that are pairwise either to the same task or in the list of the same core. Once we assign one of these
submissions to a timeslot, this means that the other submission of the corresponding task and the
corresponding core have to be assigned to the other timeslot. This, in turn, implies that two other
submissions have to be assigned to the same timeslot as the initial submission, and so on.
This means that once we assign a single submission of a cycle to a timeslot, this determines uniquely to
which timeslots all other submissions of this cycle have to be assigned to. Moreover, by construction,
the two submissions to each task are assigned to different timeslots, and so this ensures that the
submissions to all tasks are balanced, as required. This can be implemented in time 𝑂(𝑁 + 𝑇), solving
the first group in this subtask.
If there are tasks whose number of submissions is not divisible by 2, we can replace them by multiple
tasks with 2 submissions each and one task with 1 submission. Then, in addition to cycles, we will
also have paths, but the same construction also applies to them. This can still be implemented in
time 𝑂(𝑁 + 𝑇), and solves the entire subtask.

Subtask 3. 𝑁 ⋅ 𝑆 ≤ 10 000

From this subtask on, we frame the problem in the terms of graph theory. More precisely, we construct
a bipartite graph with the left vertices being the cores, the right vertices being the tasks, and the
submissions being edges between them.
Again, we will first focus on the case where the number of submissions to each task is divisible by
𝑆, or equivalently where the degree of every right vertex of the bipartite graph is divisible by 𝑆. As
before, we can assume that every degree is exactly 𝑆 by splitting a vertex of degree 𝑑 into 𝑑/𝑆 vertices
with degree 𝑆 each.
Now, for each minute, our assignment has to pick exactly one submission from the list of every
core while also selecting exactly one submission to each task. In our bipartite graph, such a set of
submissions corresponds to a perfect matching. Fortunately, it is known that every regular bipartite
graph—that is, a bipartite graph where the degrees of all vertices are the same—has a perfect matching.
This can be proven using Hall’s Theorem, for example.

1/3



Day 1
Task: balance

Spoiler

From this, we get the following algorithm: first, compute a perfect matching in the bipartite graph, and
let these be the submissions evaluated by the cores in the first minute. Then, remove those edges
from the graph. The resulting bipartite graph is still regular, so we still know that it contains a perfect
matching. Therefore, we can repeatedly compute perfect matchings and remove them from the graph
until we have a set of submissions evaluated by the cores for every minute.
Since the bipartite graph has 𝑁 left vertices and 𝑁 ⋅ 𝑆 edges, there are simple matching algorithms that
run in time 𝑂(𝑁2 ⋅ 𝑆). This yields an overall runtime of 𝑂(𝑁2 ⋅ 𝑆2), solving the first group in this subtask.
Similar to before, if the degrees of some right vertices are not divisible by 𝑆, we can replace them by
multiple vertices with degree 𝑆 each and one vertex with degree in [1, 𝑆 − 1]. However, in this bipartite
graph, simply finding complete left-to-right matchings and removing them repeatedly might not work
as we have no guarantee that such matchings will always exist.
Instead, we can transform our graph into a regular bipartite graph by adding new left vertices and
connecting them to right vertices with degree lower than 𝑆. If we pick perfect matchings in this regular
bipartite graph, they reduce to complete left-to-right matchings in the original graph, as required.
The regular bipartite graph will have at most 𝑁 + 𝑇 left vertices, so the previous algorithm runs in time
𝑂((𝑁 + 𝑇)2 ⋅ 𝑆2), solving the second group of this subtask.
Finally, if 𝑇 ≥ 𝑁, we can observe that before constructing the regular bipartite graph, we can simply
merge any two right vertices if the sum of their degrees is at most 𝑆. Once such merges are no longer
possible, we will have 𝑇 ≤ 2𝑁, and so we can apply the previous algorithm. This solves the entire
subtask with a runtime of 𝑂(𝑁2 ⋅ 𝑆2).

Subtask 4. No further constraints.

In this subtask, instead of removing matchings one-by-one, we will employ a divide-and-conquer
approach: we want to split the edges of the bipartite graph into two sets such that for every vertex
(both left and right), half of its incident edges, up to rounding, are in each set. Since 𝑆 is a power of two,
we can apply this recursively, and this will produce the required balanced ordered assignment: this
splits the edges incident to left vertices equally, so every core will evaluate exactly one submission
per minute, and it also splits the edges incident to right vertices equally, which means that the
submissions to any task will be balanced in the end.
To split the edges of the bipartite graph into two such sets, we can use Euler tours. First, if the degree
of every vertex is even, we can take any Euler tour. Then, we put every second edge into one set and
every other edge into the other set. Since consecutive edges are in different sets, this ensures that
exactly half of the edges incident to any vertex end up in the first set and half of the edges end up in
the second set, as required. If every degree was divisible by 𝑆 in the beginning, the degree of every
vertex will stay even throughout this process, and so this solves the first group of this subtask. Since
Euler tours can be computed in linear time, this gives a runtime of 𝑂(𝑁 ⋅ 𝑆 log 𝑆).
Finally, whenever some right vertices have odd degree, we can add a new left vertex connected to all
of these right vertices with odd degree. Then, every vertex will have an even degree, and we can apply
the approach from before to partition the edges into two sets. If we remove the additional left vertex,
this still guarantees that for every vertex, up to rounding, half of its incident edges are in each set.
This solves the entire task, with a runtime of 𝑂(𝑁 ⋅ 𝑆 log 𝑆).

2/3



Day 1
Task: balance

Spoiler

Final remarks.

The task could also be solved if 𝑆 is not a power of two. For this, we can combine the ideas of Subtasks
3 and 4. If 𝑆 is odd, we can remove a perfect matching from the graph, and if 𝑆 is even, we can split
the edges into two sets as above. Overall, this would give a runtime of 𝑂(𝑁2 ⋅ 𝑆 log 𝑆), or better if the
matching algorithm is more efficient. However, this would be more annoying to implement, and it
was difficult to prevent efficiently implemented matching solutions to subtask 3 from solving these
testcases as well, which is why such a subtask was not included in this problem.

3/3



Day 2
Task: trade

Spoiler

Tricks of the Trade (trade)
by Lukas Michel and Tobias Lenz

Subtask 1. 𝑁 ≤ 200

In this subtask we have enough time to check each possible segment by computing the sum of the 𝐾
largest sale values and subtracting from this the sum of the costs of the segment. We can implement
this check in 𝑂(𝑁) by using the nth_element function, but even computing it via sorting in 𝑂(𝑁 log𝑁) is
fine. Moreover, we can also compute the optimal indices by marking those elements that are at least
as large as the 𝐾-th largest element of each such segment, where we reset all markings whenever we
find a new segment with a higher profit.
Overall the runtime of this solution is 𝑂(𝑁3) or 𝑂(𝑁3 log𝑁).

Subtask 2. 𝑁 ≤ 6000

In this subtask we improve the above idea by handling each segment in 𝑂(log𝑁) time. For this, we fix
the left endpoint of the segment, and we iterate through every possible right endpoint. At the same
time, we keep a priority queue with the 𝐾 largest elements of the segment, and we also keep track of
the sum of these elements as well as the costs of the current segment. This allows us to compute the
profit of the current segment in time 𝑂(log𝑁).
To compute the optimal indices, for each segment with the maximum profit that we encounter we
can store the segment along with its 𝐾-th largest element. We will denote the 𝐾-th largest element of
segment [ℓ, 𝑟] by 𝑡[ℓ,𝑟]. An index 𝑖 is then optimal if and only if there is a maximum profit segment [ℓ, 𝑟]
with ℓ ≤ 𝑖 ≤ 𝑟 and 𝑠𝑖 ≥ 𝑡[ℓ,𝑟]. Computing all such indices can be done efficiently with a minimum segment
tree or a sweep line approach, both in time 𝑂(𝑁 + 𝑆 log𝑁) where 𝑆 is the number of segments with
maximum profit.
Overall this leads to a runtime of 𝑂(𝑁2 log𝑁).

Subtask 3. 𝐾 = 2

For 𝐾 = 2, we observe that in any maximum profit segment [ℓ, 𝑟] you have to sell the robots ℓ and 𝑟 to
the other contestants.
This allows us to iterate through all possible right endpoints 𝑟 while we maintain the maximum profit
that we can gain from picking any left endpoint ℓ < 𝑟. This profit is 𝑠𝑟+𝑚𝑟 where𝑚𝑟 ≔ max1≤ℓ<𝑟 𝑠ℓ−∑𝑟𝑖=ℓ 𝑐𝑖.
We can update 𝑚𝑟 in 𝑂(1) whenever we move one step to the right by noting that

𝑚𝑟 = max{𝑚𝑟−1 − 𝑐𝑟, 𝑠𝑟−1 − 𝑐𝑟−1 − 𝑐𝑟}.

This allows us to compute the maximum profit in 𝑂(𝑁).
To compute the optimal indices, we can simply store all right endpoints that are part of a maximum
profit segment and then repeat the procedure backwards to obtain all left endpoints of maximum
profit segments. Together, these two sets form the set of optimal indices by our observation.

Subtask 4. 𝐾 ≤ 200

Let 𝑝(𝑟, 𝑘) denote the maximum achievable profit if we buy some segment [ℓ, 𝑟] and sell 𝑘 robots of
this segment. Then, the maximum profit is max1≤𝑟≤𝑁 𝑝(𝑟, 𝐾). As base cases, we have 𝑝(𝑟, 0) = 0 and
𝑝(0, 𝑘) = −∞ for 𝑘 > 0. Then, we can calculate 𝑝 recursively for 𝑟, 𝑘 > 0 as

𝑝(𝑟, 𝑘) = max{𝑝(𝑟 − 1, 𝑘), 𝑝(𝑟 − 1, 𝑘 − 1) + 𝑠𝑖} − 𝑐𝑖.

1/3



Day 2
Task: trade

Spoiler

This is because we can choose whether or not to sell the 𝑖-th robot. This formula can be evaluated in
𝑂(𝑁𝐾) using dp.
To find the optimal indices, we reconstruct all optimal dp transitions. If a transition (𝑖, 𝑘) → (𝑖 + 1, 𝑘 + 1)
appears in an optimal solution, then the 𝑖-th robot is part of an optimal transaction.

Subtask 5. No further constraints.

We can visualize the dp of the previous subtask as a directed acyclic graph with nodes (𝑟, 𝑘) and edges
(𝑖 − 1, 𝑘) → (𝑖, 𝑘) with weight −𝑐𝑖 and
(𝑖 − 1, 𝑘) → (𝑖, 𝑘 + 1) with weight 𝑠𝑖 − 𝑐𝑖.

The problem of finding the maximum profit is then equivalent to finding the longest path from some
node of the form (ℓ, 0) to some node (𝑟, 𝐾) in this graph. For example, the graph for 𝑁 = 3 and 𝐾 = 2
looks like this:

0, 0 1, 0 2, 0 3, 0

0, 1 1, 1 2, 1 3, 1

0, 2 1, 2 2, 2 3, 2

𝑠 1−
𝑐 1

𝑠 1−
𝑐 1

−𝑐1

−𝑐1

𝑠 2−
𝑐 2

𝑠 2−
𝑐 2

−𝑐2

−𝑐2

𝑠 3−
𝑐 3

𝑠 3−
𝑐 3

−𝑐3

−𝑐3

For a left endpoint ℓ, we say that a right endpoint 𝑟 > ℓ is ℓ-optimal if buying the segment [ℓ, 𝑟] achieves
the maximum profit possible for this fixed left endpoint ℓ.

Lemma 1. Let ℓ1 < ℓ2 < 𝑟2 < 𝑟1 be such that 𝑟1 and 𝑟2 are ℓ1- and ℓ2-optimal respectively. Then, 𝑟2 is
also ℓ1-optimal, and 𝑟1 is also ℓ2-optimal.

Proof. Let 𝑝1 and 𝑝2 be longest paths corresponding to the intervals [ℓ1, 𝑟1] and [ℓ2, 𝑟2]. The paths 𝑝1
and 𝑝2 must intersect at some vertex 𝑣 of the graph:

ℓ1 ℓ2

𝑟2 𝑟1

v

2/3



Day 2
Task: trade

Spoiler

The paths from 𝑣 to 𝑟1 and from 𝑣 to 𝑟2 must have the same length as we could otherwise replace the
part of 𝑝1 or 𝑝2 that comes after 𝑣 with a longer path. In particular, the path from ℓ1 to 𝑟2 via 𝑣 has the
same length as 𝑝1, and the same holds for the path from ℓ2 to 𝑟1 compared to 𝑝2. Hence, buying the
segment [ℓ1, 𝑟2] or [ℓ2, 𝑟1] also achieves the maximum profit.

Let opt(ℓ) be the smallest ℓ-optimal right endpoint. If we can compute opt(ℓ) for every possible left
endpoint ℓ, then the maximum overall profit is the maximum profit of the segments [ℓ,opt(ℓ)]. From
the lemma above we get that opt(ℓ) ≤ opt(ℓ + 1).
This means that we can apply the divide and conquer optimization: First, we compute opt(𝑚) for
𝑚 = 𝑁/2 by iteratively testing every possible value 𝑟. Then, to compute opt(ℓ) for ℓ ∈ [1,𝑚 − 1], we
only need to consider 𝑟 ≤ opt(𝑚) as possible right endpoints, and for ℓ ∈ [𝑚 + 1, 𝑁] we only check
𝑟 ≥ opt(𝑚). For these intervals, we can apply the idea recursively. In total, this means that we have to
check at most 𝑂(𝑁 log𝑁) values of 𝑟.
However, during this divide and conquer algorithm, we still need an efficient way to compute the
maximum profit of a segment [ℓ, 𝑟]. Since we can compute the costs of such a segment with prefix sums
(or one of many other ways), we focus on efficiently computing the sum of the 𝐾 largest elements of this
segment. For this, recall our approach from Subtask 2. There, we kept a set of the 𝐾 largest elements
of our current segment [ℓ, 𝑟] as well as their sum, and we were able to efficiently add elements to this
segment.
In our divide and conquer algorithm, we can now always move our current segment [ℓ, 𝑟] to the segment
where we need to know the sum of the 𝐾 largest elements. However, for this we would also need to
be able to remove elements from the segment. Fortunately, this is also possible: in addition to the
set with the 𝐾 largest elements, we can also keep a set with all the other elements of the current
segment. If we now delete an element, we can delete it from the appropriate set and rebalance the
two sets so that afterwards the top set contains the 𝐾 largest elements once more.
With the standard analysis of the divide and conquer optimization, we can prove that ℓ and 𝑟 move at
most 𝑂(𝑁 log𝑁) steps during this process, and so this algorithm runs in time 𝑂(𝑁 log2 𝑁). It would also
have been possible to use persistent segment trees to compute the sum of the 𝐾 largest elements,
which would have resulted in the same complexity.
For a full solution, it remains to compute the optimal indices. In Subtask 2 we already noted that
if there are 𝑆 segments with maximum profit, we could do it in time 𝑂(𝑁 + 𝑆 log𝑁). However, in this
subtask, it might hold that 𝑆 ∈ Θ(𝑁2) which makes this approach too slow. So, we have to reduce the
number of segments that we need to consider.
For this, assume that [ℓ1, 𝑟1] and [ℓ2, 𝑟2] are segments with maximum profit with ℓ1 < ℓ2 < 𝑟2 < 𝑟1 and
that 𝑖 ∈ [ℓ1, 𝑟1] is an optimal index. This means that 𝑖 is one of the 𝐾 largest elements in one of these
two segments. In this case, we know from the lemma that [ℓ1, 𝑟2] and [ℓ2, 𝑟1] are also segments with
maximum profit. Since these segments are shorter, it follows that 𝑖 must also be an optimal index of
one of the segments [ℓ1, 𝑟2], [ℓ2, 𝑟2], or [ℓ2, 𝑟1].
In particular, if ℓ1 < ℓ2 are left endpoints of segments with maximum profit with no such endpoint in
between, for ℓ1 we only need to consider right endpoints 𝑟 with opt(ℓ1) ≤ 𝑟 ≤ opt(ℓ2) when computing
all optimal indices. This means that we will only consider at most 2𝑁 segments in total, allowing us to
compute all optimal indices with a two pointer approach in 𝑂(𝑁 log𝑁).

3/3



Day 2
Task: incursion

Spoiler

The Ties That Guide Us (incursion)
by Lukas Michel

Throughout, we will refer to the problem in graph theoretic terms: the floor plan describes a tree with
𝑁 nodes, such that any node has degree ≤ 3.

Subtask 1. No degree 3 node

In this subtask, the tree is actually a line. Assume first that the number 𝑁 of nodes is odd. While you
and your assistant might receive this line in different numberings, there is one special node that can
be identified without reference to any numbering, namely the node in the middle. This suggests a
two step procedure to get to the secret node: first, we walk to the midpoint, and then we have our
assistant (who would not know our starting point) guide us from there—for this, he can simply mark
the path from the midpoint to the secret node (by placing exactly one tie in the respective rooms and
no ties anywhere else).
Note that if our starting position lies on the opposite side of the midpoint than the secret node, this
will need at most two steps over the shortest path between them (namely, when we ‘overshoot’ and
have to walk back to the secret node). However, when we start on the same side as the secret node,
actually walking to the midpoint might result in a huge detour. This issue can be solved as follows:

If our starting node is marked, we simply walk away from the midpoint (again, overshooting by
at most 1, resulting in a maximum detour of 2).
If not, we can simply stop at the first marked node we encounter (resulting in no detour at all).

The case where 𝑁 is even is only slightly more complicated: instead of a unique midpoint, we now
have two (neighbouring) nodes in the middle. In the first step, our assistant will simply mark all nodes
on the path from the secret node to the node in the middle that is closer. Almost the same strategy
as above will then work for us to find the secret node where we now try to walk to the marked point
in the middle:

If our current node is marked we walk towards the end that is closer to us; the last marked
node we encounter is the secret node.
If not, we walk to the midpoint that is further from our starting location. If we encounter a
marked node on the way, the first such node has to be the secret node. Otherwise we follow
the markings left by our assistant; the last marked node will be the secret one.

Subtask 2. Precisely one degree 2 node

In this subtask, the tree no longer needs to be a line (and in fact, it will almost never be). However,
there is still one special node that both we and our assistant can identify: the unique node with
degree 2. Using this observation we can now use a very similar strategy to the line case:

Our assistant will mark the path from the unique degree 2 node to the secret node.
We first walk from our current node to the unique degree 2 node until we visit a marked node
for the first time.
At that point, we can follow the markings (moving away from the unique degree 2 node) to the
secret node.

However, the third step is actually more subtle this time: as we are no longer just dealing with a line,
there might be several possibilites for the next node, and we have no way to tell which one of these is

1/3



Day 2
Task: incursion

Spoiler

marked without actually walking there. However, whenever we walk to the wrong node, this incurs a
cost of 2, so we can’t allow ourselves to have this happen too often.
To solve this, root the tree at the unique degree 2 node. We will then always walk into the larger
of the two subtrees first: if this is correct, everything is fine, and if not, then the marked path has
to continue to the smaller subtree. Thus, whenever we make a mistake, this halves the size of the
remaining subtree, which can only happen 𝑂(log𝑁) times. Let us analyze this more closely to see
that it really fits into the task constraints, for which it will be useful to argue in a bottom-up fashion
instead:

Let 𝑘 denote the number of children of our secret node (note that 𝑘 is at most 2 except for the
easy case that the secret node agrees with our chosen root). Then we might make a detour of
up to 2𝑘 at this node because of overshooting.
Consider now the marked nodes 𝑣1, … , 𝑣ℓ apart from the secret node where we we went to the
wrong subtree first (numbered from bottom to top), and let 𝑠𝑖 denote the corresponding subtree
sizes; we moreover write 𝑠0 for the size of the subtree rooted at the secret node. As we always
go to the larger subtree first, we have 𝑠𝑖+1 ≥ 2𝑠𝑖 + 1. Combining this with 𝑠0 ≥ 𝑘 + 1, we see
inductively that 𝑠ℓ ≥ 2ℓ(𝑘 + 2) − 1.
Our total detour is 2(𝑘 + ℓ). Trying 𝑘 = 0, 1, 2, we see that for a total detour of 32 we would need
to have 𝑁 ≥ 𝑠ℓ ≥ 216 − 1 = 65 535 (achieved for 𝑘 = 2, ℓ = 14), which is larger than the maximum
number of rooms.

Subtask 3. No further constraints

In the final subtask, we are given a completely general tree. In order to adapt the solution to the
previous subtask to this case, we somehow need to find a special node again that can be identified
without referring to the numbering of our nodes and edges (or, to use fancy graph theoretic terminology,
a node fixed by any automorphism of our tree). While already the line case shows that this need
not be possible, we can again solve this by also allowing a set of two neighbouring nodes instead.
Possible such choices are then the centers of the tree (nodes minimizing the maximum distance to
any other node) or the centroids (nodes minimizing the maximum component size when we remove
them). We can now again simply have our assistant mark the path from the secret node to the special
node (or the closer one of the two special nodes, if there is more than one) and then use the same
strategy as before to locate the secret node.
In our analysis, we need to consider one extra case: the root might have degree 3. In this case, if the
subtree containing the marked path is the smallest, we might actually make a detour of 4 right at the
root. However, in order to make a detour of 28 in the subtree of the marked path, this would then
need to contain at least 214 − 1 = 16 383 nodes (recycling the analysis from the previous subtask),
resulting in 𝑁 ≥ 49150.
Note in particular that the bounds in this task are quite tight: already with the slightly weaker bound
𝑁 ≤ 50000 our strategy would not be able to guarantee a detour of 30. In fact, one can force any
strategy to make a detour of at least 32 on the following tree with 𝑁 = 49150 nodes: take three
balanced binary trees of height 13 and add a new node connected precisely to their roots. This is
actually the only instance with less than 65535 nodes on which our strategy will lead to a detour
larger than 30.

2/3



Day 2
Task: incursion

Spoiler

Solutions with more ties.

If we are allowed to mark the nodes with integers up to 𝑁 − 1 (i.e. have our assistant leave behind
up to 𝑁 − 1 ties per room), a natural strategy is to simply mark each node with the distance to the
special node. We will then immediately recognize the special node upon entering, and before that we
can always simply walk to the unique neighbour whose marking is smaller than the current one. This
solves the line case directly, while for the general case we again need the idea to check the larger
subtree first.
For a solution with markings bounded by 2, we observe that the distance can only increase or decrease
by 1 when we travel to a neighbouring node. Thus, to recognize whether the distance decreased, it is
enough to remember the distance modulo 3. The secret node can be identified from this data as the
unique node such that we cannot decrease the distance by walking to a neighbouring node.

3/3



Day 2
Task: avoid

Spoiler

How to Avoid Disqualification in 75 Easy Steps (avoid)
by Tobias Lenz

Throughout, we denote the positions of the chairmen by 1 ≤ 𝑎 ≤ 𝑏 ≤ 1 000, and 𝑁 = 1000 is the number
of positions.

Subtask 1. 𝑅 = 10, 𝐻 = 1, and both chairmen are located at the same position.

This subtask is easiest to solve if we invert the problem: instead of determining for each robot which
positions it scouts, we will determine for each position 𝑝 the set of robots 𝑅𝑝 ⊆ {1,… , 10} scouting it.
If both chairmen are located at position 𝑎, a robot 𝑟 will detect at least one chairman if and only if
𝑟 ∈ 𝑅𝑎. Hence, the results of all 10 robots are equivalent to knowing the set 𝑅𝑎. To determine 𝑎 from
this, we therefore need to ensure that the sets 𝑅𝑝 are all different.
Fortunately, 210 ≥ 1 000, and so we can assign a unique subset 𝑅𝑝 ⊆ {1,… , 10} of the robots to each
position 𝑝. A simple way to do this is to use the binary representation of 𝑝—then, the results of the
robots spell out the position of the chairmen in binary, solving this subtask.

Subtask 2. 𝑅 = 𝐻 = 20

This subtask can be solved with two binary searches. With the first binary search, we want to determine
the smallest position 𝑎 of one of the chairmen. For this, we will always keep an interval [ℓ, 𝑟] that
contains 𝑎, starting with ℓ = 1 and 𝑟 = 1 000. Then, in each step, we pick 𝑚 = ⌊(ℓ + 𝑟)/2⌋, send a robot to
the positions {ℓ, ℓ + 1, … ,𝑚}, and wait for its result. If this robot detects a chairman, we know that the
interval [ℓ,𝑚] must contain 𝑎, and so we set 𝑟 = 𝑚. Otherwise, 𝑎 must be contained in [𝑚 + 1, 𝑟], and
so we assign ℓ = 𝑚 + 1. Once we have ℓ = 𝑟, which happens after at most ⌈log2 1000⌉ = 10 steps (and
10 robots), we have determined 𝑎 as required.
With the second binary search, we can simply determine the largest position 𝑏 of one of the chairmen
analogously, again with 10 robots. Therefore, we can determine the positions of both chairmen with
20 robots in total.
Note that we could also execute the above two binary searches simultaneously which would reduce
the total time required from 20 hours to 10 hours. It is easy to prove by counting that at least 19
robots are necessary, but the Scientific Committee does not know whether there exists a solution that
uses at most 19 robots.

Subtask 3. 𝑅 = 30, 𝐻 = 2

To find the positions of the two chairmen in 2 hours, recall our approach to Subtask 1. To all positions
𝑝, we had assigned a distinct set 𝑅𝑝 ⊆ {1,… , 10} of robots, namely the binary representation of 𝑝. We
will denote the 𝑖-th bit of 𝑝 by 𝑝𝑖, and so 𝑖 ∈ 𝑅𝑝 if and only if 𝑝𝑖 = 1.
Now, in this subtask, we will send 10 robots as described by the sets 𝑅𝑝, and we send an additional
10 robots for the complements 𝑅𝑐𝑝, all during the first hour. Based on the results of these robots, we
will know for all 𝑖 that either 𝑎𝑖 = 𝑏𝑖, in which case we will also the value of 𝑎𝑖 and 𝑏𝑖, or 𝑎𝑖 ≠ 𝑏𝑖.
Now, in the second hour, we need to reconstruct the remaining information. If 𝑖 and 𝑗 are bits such
that both 𝑎𝑖 ≠ 𝑏𝑖 and 𝑎𝑗 ≠ 𝑏𝑗, we need to determine whether 𝑎𝑖 = 𝑎𝑗, and equivalently 𝑏𝑖 = 𝑏𝑗, or whether
𝑎𝑖 ≠ 𝑎𝑗, and equivalently 𝑏𝑖 ≠ 𝑏𝑗.
To do this, let 𝑖 be a bit such that 𝑎𝑖 ≠ 𝑏𝑖. Now, for every 𝑗 that is different between 𝑎 and 𝑏, we will
simultaneously send a robot to all those positions 𝑝 where 𝑝𝑖 = 𝑝𝑗. If this robot detects a chairman,

1/4



Day 2
Task: avoid

Spoiler

we know that 𝑎𝑖 = 𝑎𝑗 and also 𝑏𝑖 = 𝑏𝑗, and otherwise we know that 𝑎𝑖 ≠ 𝑎𝑗 and also 𝑏𝑖 ≠ 𝑏𝑗. This lets us
reconstruct 𝑎 and 𝑏 based on the 𝑖-th bit. This strategy uses at most 29 robots in 2 hours.

Subtask 4. 𝑅 = 75, 𝐻 = 1

This is the only output-only subtask of this ceoi.*

Constructive solutions. We begin by describing some constructive solutions.

Firstly, we can adapt the solution to Subtask 3. Instead of using the second phase of that
strategy, we can, for each pair of bits 𝑖 and 𝑗, already send a robot in the first phase to all
positions 𝑝 with 𝑝𝑖 = 𝑝𝑗. This uses a total of 20 + (

10
2 ) = 𝟔𝟓 robots. Then, we already know the

results for all robots that we would have sent out during the second phase, and so we can
immediately reconstruct 𝑎 and 𝑏 after just one hour.
To get a solution with fewer robots, we can use a base other than 2. We will describe a solution
with base 3, where we again denote the 𝑖-th digit of a position 𝑝 by 𝑝𝑖. Then, for every digit 𝑖 and
every 𝑑 ∈ {0, 1, 2}, we send a robot to all positions 𝑝 with 𝑝𝑖 = 𝑑. Since there are ⌈log3 1000⌉ = 7
digits, this uses 21 robots, and it will tell us for every digit 𝑖 whether 𝑎𝑖 = 𝑏𝑖, in which case we
will also know the values of 𝑎𝑖 and 𝑏𝑖, or whether 𝑎𝑖 ≠ 𝑏𝑖. In this second case we know which
two digits 𝑎𝑖 and 𝑏𝑖 are, so we know two digits 𝑑

1
𝑖 , 𝑑

2
𝑖 ∈ {0, 1, 2} such that {𝑎𝑖, 𝑏𝑖} = {𝑑

1
𝑖 , 𝑑

2
𝑖 }, but

we do not know whether 𝑎𝑖 = 𝑑
1
𝑖 or 𝑎𝑖 = 𝑑

2
𝑖 , and similarly for 𝑏𝑖.

Thus, for every pair of digits 𝑖 and 𝑗 we also need to send robots to make sure that if 𝑑1𝑖 ≠ 𝑑
2
𝑖

and 𝑑1𝑗 ≠ 𝑑
2
𝑗 , we know whether 𝑑

1
𝑖 and 𝑑

1
𝑗 are both digits of 𝑎 or both digits of 𝑏, or whether this

is not the case. It turns out that it is again sufficient for this to send a robot to all positions 𝑝
with 𝑝𝑖 = 𝑝𝑗. Indeed, one of the digits 𝑑

1
𝑖 or 𝑑

2
𝑖 must have the same value as one of the digits 𝑑

1
𝑗

or 𝑑2𝑗 , and so the result of this robot tells us whether these two digits are both digits of 𝑎 or
both digits of 𝑏. This uses an additional (72) = 21 robots, for a total of 𝟒𝟐 robots.
There also exists a solution with base 4 that uses 𝟒𝟎 robots.
Finally, it is possible to come up with a scheme that takes a solution for 𝑁 positions and 𝑅
robots and produces a scheme for 𝑁2 positions and 3𝑅 robots. For this, let 𝑅𝑝 be the sets of
robots assigned to each position 𝑝 in the scheme for 𝑁 positions. We then represent the 𝑁2

positions as pairs (𝑝, 𝑞) with 1 ≤ 𝑝, 𝑞 ≤ 𝑁, and for (𝑝, 𝑞) we send 𝑅 robots each according to 𝑅𝑝,
𝑅𝑞, and 𝑅𝑝+𝑞 (mod 𝑁). It can be checked that this allows you to uniquely determine the positions
of the chairmen among all 𝑁2 positions. Starting with a solution with 𝑁 = 𝑅 = 6 and applying
this twice leads to a solution with 𝟓𝟒 robots.

A general approach. Assuming that we have already determined where each robot is sent to, we can
check efficiently whether this is a valid scheme that always determines the positions of the chairmen
with certainty. To do so, consider again the sets 𝑅𝑝 of robots assigned to each position 𝑝. A robot 𝑟
will detect a chairman if and only if 𝑟 ∈ 𝑅𝑎 or 𝑟 ∈ 𝑅𝑏, or equivalently 𝑟 ∈ 𝑅𝑎 ∪ 𝑅𝑏. This means that the
results of the robots are equivalent to knowing 𝑅𝑎 ∪ 𝑅𝑏, and so we can determine 𝑎 and 𝑏 uniquely if
and only if 𝑅𝑎 ∪ 𝑅𝑏 is different from all other such unions. This can be checked by representing each
𝑅𝑝 in binary as an __int𝟏𝟐𝟖_t so that 𝑅𝑝 ∪ 𝑅𝑞 is simply the bitwise or of the two numbers, running in
time 𝑂(𝑁2) when using a hash map to check for collisions.†

Reconstructing 𝑎 and 𝑏 from the answers then simply works in exactly the same way. We can iterate
through all 𝑝 and 𝑞 and check whether the 𝑅𝑝 ∪ 𝑅𝑞 matches the results of all robots.

* Wait, what? Keep on reading to understand why…
† You might have noticed that no heuristic managed to get more points than intended in the last subtask…

2/4



Day 2
Task: avoid

Spoiler

All of our full solutions are based on generating the sets 𝑅𝑝 locally on our own computer, potentially
taking minutes or even hours, until we have a valid scheme. Such a scheme can then be encoded as
a list of numbers in the submission, and we use the above strategy to determine 𝑎 and 𝑏 from the
results of the robots.

Generating robots. Let us first describe some strategies that try to generate the plan robot by robot.
Fix 0 < 𝑝 < 1 and send any robot 𝜚 to any position 𝑥 with probability 𝑝, independently of any
other choices. We claim that for sufficiently many robots this will yield a valid scouting plan with
positive probability. To prove this, let us say that an assignment for a single robot distinguishes
two sets 𝐿 ≔ {𝑥, 𝑦} and 𝐿′ ≔ {𝑥′, 𝑦′} of possible chairman positions if the robot returns 1 for
precisely one of these two sets. Note that this happens with a positive probability 𝑞 (maximized
for 𝑝 ≈ 1

3 ). Moreover, for any other robot 𝜚
′, the events that 𝜚 distinguishes the two given 𝐿, 𝐿′ or

that 𝜚′ distinguishes them are independent; in particular, for 𝑟 robots the probability that we do
not distinguish them is (1 − 𝑞)𝑟. Summing over all 𝐿, 𝐿′ this yields an upper bound of 𝑁4(1 − 𝑞)𝑟

for the probability that we do not find a correct scouting plan. For 𝑟 → ∞ robots, this failure
probability converges to 0. In practice, this approach suffices to find solutions with 𝟓𝟎 robots in
reasonable time.
The previous strategy tends to generate plans that almost work, i.e. there are few pairs (𝐿, 𝐿′)
which we cannot separate. This allows us to get better results by ‘supersampling’: we first use
the above strategy for 𝑁 > 1000 positions (𝑁 ≈ 2000 seems to be the sweet spot); as long as
there are {𝑥, 𝑦} and {𝑥′, 𝑦′} which we can’t distinguish, we randomly throw away one of 𝑥, 𝑦, 𝑥′, 𝑦′.
This yields solutions with around 𝟑𝟓 to 𝟒𝟎 robots, depending on how much computing time you
are willing to invest or how clever you are in selecting the positions to discard.
Instead of all the fancy randomness, we can try to be more systematic in assigning positions to
the robots, somewhat akin to binary search.
For this, let us first consider the case of a single robot. Ideally, the two possible answers 0 and
1 should occur for around the same number of possible chairman positions. Doing the math,
we see that for this we should send the robot to a fraction of

𝛼 ≔ 1 −
√2
2
= 0.29289…

of the positions (note that this is not the optimal probability 𝑝 from the random approach!).
Similarly, for two robots, the outcomes 00, 01, 10, and 11 should occur for around the same
number of possible chairman positions. To achieve this, we can send the second robot to a
fraction of 𝛼 of the first robot’s positions and to a fraction of 𝛼 of the positions not visited by
the first robot.
If we iterate this idea to determine where to send 𝑘 robots, we run into the issue that 𝛼𝑘 → 0
rapidly; in particular, rounding errors take over around 𝑘 ≈ 7 and we do not separate the ‘blocks’
of possible positions for fixed return values evenly any more. We therefore switch to a greedy
approach that tries several random plans for each individual robot, and then takes the one that
minimizes the maximum size of any block. Possibly combining this with some local optimization,
we obtain solutions with around 𝟑𝟎 robots.

Generating positions. Another way to generate a solution is to fix the number of robots and to
generate positions one-by-one. We start without any positions. Then, we can iteratively add new
positions to our solution, always choosing a new set 𝑅𝑝 for a new position 𝑝 in such a way that there
are no collisions with any or the previous positions.

3/4



Day 2
Task: avoid

Spoiler

If we simply pick each set 𝑅𝑝 randomly (with the above probabilities), this manages to generate
a solution with 𝟑𝟎 robots.
If we try fewer robots than this, the number of valid choices for the next set 𝑅𝑝 becomes very
small. This means that every iteration takes very long and we do not reach the 1000 positions
that we need.
Instead, at some appropriate point during the computation we can simply start to keep all
possible compatible sets that would create no collision with the positions that we have gener-
ated to far. This makes it much faster to select the next set 𝑅𝑝. Moreover, we can connect this
with other heuristics, such as selecting 𝑅𝑝 in a way that maximises the number of remaining
compatible sets. This can produce a solution with 𝟐𝟕 robots.
Right now, the Scientific Committee only knows a single way to obtain a solution with fewer
robots. For this, we again select the sets 𝑅𝑝 iteratively. However, we perform this in a very
specific way. Namely, we only add sets with exactly 8 elements to our solution, and we also
only add them if their symmetric difference with every set chosen so far contains at least 6
elements. Moreover, we try to add these sets in increasing order if we look at them in their
binary representation. This produces a solution with 992 positions, which is not sufficient yet.
If we then iterate through all remaining sets that we haven’t tried so far (e.g. because they do
not have the correct number of elements), and we try to add them greedily to our solution, it is
possible to improve this solution to 998 positions. Unfortunately, this is still not enough. At
this point we are stuck…
…is what we would have said if we had not tried to throw some simulated annealing on this
solution to generate additional positions. After a short time, this manages to add two more
positions to our solution. This is then a solution with 𝟐𝟔 robots and 1000 positions, shown in
the picture below, where a black box (2 pixels wide and 10 pixels high) in row 𝜚 and column 𝑝
means that robot 𝜚 is sent to position 𝑝:

It turns out that our way of generating the initial solution with 992 positions is quite fragile.
Whenever we tried to change any part of this approach (say by going through the sets 𝑅𝑝 in a
random order when trying to add them), the solution got much worse.

For 25 robots, the best we were able to do is a solution with slightly below 800 positions. The Scientific
Committee also has no idea what the minimum number of robots is that a solution requires—we have
not even been able to prove that more than 19 robots are necessary.

4/4


